

Case Study: A Java Filesystem Web
Service

So far in this book, we've seen how Web Services provide a powerful way to expose business functionality
over the Internet. Now, let's take a look at a practical implementation of a unique Web Service using the
Apache SOAP Toolkit and Java. This case study describes the tools and the object model of the Apache SOAP
Toolkit, and then demonstrates an implementation of a functional Filesystem Web Service. All the required
source code for this chapter is available from the Wrox web site at: http://www.wrox.com/.

The Filesystem Web Service
The Filesystem Web Service implements a virtual filesystem over HTTP. Using SOAP Messaging with
Attachments to wrap binary and text files, distributed applications can manipulate files and directories with
location transparency and security. The benefits to this Web Service are:

q Secure remote storage and retrieval of files without investing in quickly outdated hardware

q Virtual archive and automated/unattended backups

q Access to data anywhere in the world

q Virtually unlimited file storage

q Cross-platform interoperability

q Operating system and location transparency

Some target users for this Web Service may be:

Chapter 14

614

q Wireless application providers and wireless device users who have no local storage

q Organizations that want to provide a personal backup solution to their users but cannot afford to
install zip/tape drives in every computer

q Internet/Application Service Providers (ISPs, ASPs) who want to provide paid services to their
customers

q Intranet users who require self -service backup/restore capabilities

q People who travel, and need access to their files on the road

q Individuals with no local backup devices

q Users who need data archived in a secure manner

q Individuals who require additional disk space due to small local hard drives

q Telecommuters

q Organizations that require remote backup/disaster recovery

With such a broad range of possible applications in mind, one concern for a Web Service such as this is
security.

Why Do We Need Security for Web Services?
When developing web services, specifically those that transact sensitive data, you should verify that only
authorized individuals utilize your web service. It makes sense that a Web Services protocol, like SOAP
should provide a method for verifying the identity of its user.

Upon inspection of the SOAP specification, you will notice there is no mention of security. Why create a
protocol that intentionally omits one of the prime facets of distributed computing? SOAP is actually
incomplete by design. Because the SOAP specification doesn't currently address issues related to security, we
utilize the built -in security features of the underlying transport protocols that are used to deliver SOAP
messages. Since most Web Services rely on the HTTP protocol, we can use any of its various security
implementations. Web servers, firewalls, and the like can use the information provided by HTTP to validate
usernames and passwords (authentication) and grant or deny their access to resources based on the caller's
identity (authorization). With SOAP on top of HTTP, we can pass username and password information in the
HTTP header. The HTTP 1.1 Specification (http://www.ietf.org/rfc/rfc2616.txt) defines several challenge
response authentication mechanisms, which can be used by a server to challenge a client request and by a
client to provide authentication information. The general framework for access authentication, and the
specification of basic and digest authentication, are defined in "HTTP Authentication: Basic and Digest
Access Authentication" (http://www.ietf.org/rfc/rfc2617.txt).

Ultimately, a future SOAP specification should provide support for many of the available standard transport
layer security mechanisms, such as basic, digest, and cryptographic messages over SSL (Secure Socket Layers,
see http://home.netscape.com/eng/ssl3/index.html). The server invoking the Web Service should perform
authentication and authorization, as opposed to relying on the web server or other hardware. In this fashion,
we will have a robust framework through which we expose our services. These issues are especially important
if you deal with sensitive information, or wish to charge a fee for your Web Services.

Case Study: A Java Filesystem Web Service

615

Apache SOAP and the Pluggable Provider
The Apache SOAP project implements a SOAP Web Services framework using Java. The bridge between the
SOAP engine and the service being invoked is called the provider. The following diagram shows how
messages flow through Apache SOAP, and where the pluggable provider fits in:

The provider is responsible for:

q Locating, loading, and invoking the service

q Converting the result from the service into a SOAP envelope

q Implementing specialized functionality outside the scope of the SOAP specification

Here, our specialized functionality will be security. By default the SOAP engine will use the
RPCJavaProvider class as the provider for RPC services, and the MsgJavaProvider class for Message
services. RPCJavaProvider simply loads the appropriate class, invokes the desired method and converts
any result into a SOAP envelope. Our pluggable provider will use the Java Database Connectivity (JDBC)
interface to authenticate and authorize users against the SOAP service before invoking it. The pluggable
provider demonstrated in this chapter will implement authentication and authorization through the use of a
JDBC interface to a database of user profiles and Web Services. The user profiles contain username/password
pairs for authentication, and a mapping of usernames to Web Services for authorization. The use of a SQL
datasource will be a familiar paradigm for Java developers who already make use of database-driven security.

Setting Up The Server
In Chapter 10, we learned how to configure Apache SOAP and Tomcat. The examples in this chapter run
unmodified on Apache Tomcat (available from http://jakarta.apache.org/tomcat/index.html). Remember to
install the Xerces-J XML parser (http://xml.apache.org/xerces-j/). You will also need JavaMail (available
from http://java.sun.com/products/javamail/; remember to specify the location of' mail.jar on your
classpath) and the JavaBeans Activation Framework (available from
http://java.sun.com/products/javabeans/glasgow/jaf.html; you'll need to set activation.jar on your
classpath). These two packages are necessary to handle the file attachment and MIME-encoding mechanisms
of this example. To compile the servlet classes, you will need the Java 2 SDK Enterprise Edition (see
http://java.sun.com/j2ee/index.html). Some samples that come with Apache SOAP, such as

Chapter 14

616

the Calculator sample, require the Bean Scripting Framework (from
http://oss.software.ibm.com/developerworks/projects/bsf) and JavaScript (which is available with Mozilla
Rhino from http://www.mozilla.org/rhino/). If you would like to try these as well, place bsf.jar and
js.jar in your classpath. Don't forget to add soap.jar to the classpath as well. Ensure that the .jar files
are not only referenced in the classpath environment variable, which allows them to be utilized at compilation
time, but that copies of them are placed in Tomcat's /lib folder, so that they are on the server's classpath as
well. In a nutshell, here's how to hook it all up:

Some systems require you to set the TOMCAT_HOME (or CATALINA_HOME for Tomcat 4.0) environment
variable, which points to the directory containing Tomcat.

Set Tomcat's classpath with xerces.jar at the front. In bin/tomcat.bat, find the :setClasspath
section, and modify it to look like this:

:setClasspath
set CP=<path to Xerces-J>\lib\xerces.jar;%TOMCAT_HOME%\classes

On Unix systems, find the export CLASSPATH statement in bin/tomcat.sh, and add this line right
before it:

CLASSPATH=<path to Xerces-J>/lib/xerces.jar:${CLASSPATH}

Next, make sure Tomcat is running on port 8080. You can do this by verifying that conf/server.xml
contains a section like this:

<Connector className="org.apache.tomcat.service.PoolTcpConnector">
 <Parameter name="handler"
 value="org.apache.tomcat.service.http.HttpConnectionHandler"/>
 <Parameter name="port" value="8080"/>
</Connector>

Finally, add a server context for Apache SOAP. Inside the <ContextManager> tag, add the following
section:

<Context path="/soap"
 docBase="c:/soap-2_2/webapps/soap"
 crossContext="true"
 debug="0"
 reloadable="true"
 trusted="false" >
</Context>

The <Context> section maps to a path within Tomcat in which a web application exists.

The attributes in the above element are described below:

Attribute Description

path The prefix of an HTTP request, instructing Tomcat which application context to
use. This attribute always begins with a forward slash ("/").

docBase Points to a directory which will be the root of this web application.

reloadable During development, setting this value to true enables Tomcat to reload changes
to your source code. This is time consuming, and reportedly error-prone. In a
production environment, this should be set to false.

Case Study: A Java Filesystem Web Service

617

Attribute Description

trusted Enables access to Tomcat's internal objects. Most applications will set this to
false.

debug A value of "0" suppresses all console output. A value of "9" implies verbose
mode.

If you set up everything correctly, running bin/tomcat start should display this console:

Point your browser to http://localhost:8080/ to verify that everything is up and running. You should see the
following page:

To stop Tomcat, run bin/shutdown , or just kill the command window.

Chapter 14

618

Setting Up The Database
For authentication and authorization, we will use a SQL database. Specifically, I've chosen MySQL (freely
available from http://sourceforge.net/projects/mysql/), although any SQL database will work. MySQL,
aside from being free, is very fast, and runs on both Windows and Linux. There is an excellent article on
About.com entitled How to install and configure MySQL for Windows. The URL for this is
http://perl.about.com/library/weekly/aa111400a.htm . For this example, when you are setting up MySQL,
please set both the username and password to mysql.

This type of database-driven authentication should be familiar if you've ever set up any type of security on a web
site. Our database schema is relatively simple: a table to store our principals and credentials (usernames and
passwords), a table to store our Web Service identifiers (URNs), and a table to map the principals and Web Services.
We use a many-to-many relationship between principals and Web Services. We want to relate many users to many
Web Services. In order to decrease the duplication of data, we'll create a table consisting of nothing but primary keys
from the two other tables, called principal_webservice_map. Here we adhere to the Fourth Normal Form
(4NF), sometimes referred to as Boyce-Codd Normal Form (BCNF). This form is often overlooked, but it's
important when dealing with many-to-many relations. In a nutshell, this means that any given relation may not
contain more than one multivalued attribute. This concept is beyond the scope of this chapter, so I leave it as an
exercise to the reader to discover its implications. Most of these rules were defined in a paper by E.F. Codd entitled
Further Normalization of the Data Base Relational Model (this can be found in the book Data base systems, R.
Rustin, ed., Prentice-Hall, 1972). Mathematicians later developed other normalization rules, such as 4NF, 5NF, etc.
There is a good tutorial on database schema normalization at:

http://www.phpbuilder.com/columns/barry20000731.php3.

For the data definition language (DDL) in our example, we will use MySQL's syntax. This DDL can easily be
ported to any SQL database with minor changes. To create our database using MySQL, place the file
FileSystem.ddl in the bin folder of your MySQL directory (by default this is C:\mysql\bin). Change
the current directory to the bin folder of your MySQL directory, and start the server with this command:

>mysqld

Then, execute the following command from the command prompt to create the database using the DDL:

>mysql < FileSystem.ddl

The following command will display that the new database structure was created successfully:

>mysqlshow filesystem

Whenever you restart MySQL, navigate to the MySQL bin folder in the command prompt, start the server,
and enter the command:

>mysql -u mysql/mysql filesystem

Where mysql/mysql are your username and password. This ensures that the filesystem database is
accessible from the database server. To check that it is accessible, enter:

>select * from principal;

Case Study: A Java Filesystem Web Service

619

at the mysql prompt, which will display the principal table of the filesystem database:

Let's walk through the DDL for some further explanation of the schema (FileSystem.ddl in the code
download for this book):

The first line creates an empty database structure, simply called "filesystem", assuming one does not already
exist with the same name:

CREATE DATABASE IF NOT EXISTS filesystem;

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always refer to your
database as filesystem, not as Filesystem , FILESYSTEM, or some other variant. This is also true for
table names. Under Windows, this restriction does not apply, although you must refer to databases and tables
using the same case throughout a given query.

Creating a database does not select it for use; you must do that explicitly. To make filesystem the current
database, we USE the database:

USE filesystem;

The hardest part of creating a database is choosing a sound structure. What tables and columns best suit our
application? Our users, or principals, require a table of their own:

'CREATE TABLE principal (
 id int(11) NOT NULL auto_increment,
 username varchar(32) NOT NULL default '',
 password varchar(32) default '',
 homedir varchar(255) NOT NULL default '',
 PRIMARY KEY (id),
 UNIQUE KEY username (username)
) TYPE=MyISAM;

Chapter 14

620

We need some way to index and uniquely identify the principals. To that end, we create a primary key called
id, which we set to auto_increment (also called identity on many systems). We also create two fields for
username and password, which are self-explanatory, and a third called homedir, which will contain the
physical directory on the web server which will host this user's files. Users also need to be unique, so we assign a
UNIQUE KEY to the username field. Finally, we tell MySQL to use the MyISAM database type. This is the
default, but you may choose from other database types, such as BerkeleyDB, or InnoDB. These other types
support transactions with locking mechanisms, which are not necessary here, since our application is mostly read-
only.

Next, let's create a few users for our Web Service by performing an INSERT into the table we just created:

INSERT INTO principal VALUES (1,'markr',''Jsdh8qSD'','c:/users/markr');
INSERT INTO principal VALUES (2,'johns','iJ823hdV','c:/users/johns');
INSERT INTO principal VALUES (3,'linust','js89PndVs','c:/users/linust');
INSERT INTO principal VALUES (4,'larryw','58Jnfjh4g','c:/users/larryw');

The passwords can be anything you like. Here, we've just used dummy data. Next, we need to create a table to
hold references to our deployed Web Services. Since Apache SOAP uses a URI to uniquely identify Web
Services, it makes sense for us to use the same identifiers in our database. In the webservice table, we
create two columns: id and uri. This pair is also unique, so we create a composite primary key consisting of
both columns. You will notice below that the PRIMARY KEY clause contains both columns as parameters. Again,
we use the default MyISAM database type:

CREATE TABLE webservice (
 id int(11) NOT NULL auto_increment,
 uri varchar(64) NOT NULL default '',
 PRIMARY KEY (id,uri)
) TYPE=MyISAM;

Next, we insert the URI for our Web Service, urn:filesystem:

INSERT INTO webservice VALUES (1,'urn:filesystem');

We can also insert some of the Web Services that come with Apache SOAP:

INSERT INTO webservice VALUES (2,'urn:AddressFetcher');
INSERT INTO webservice VALUES (3,'urn:AddressFetcher2');
INSERT INTO webservice VALUES (4,'urn:xml-soap-demo-calculator');
INSERT INTO webservice VALUES (5,'urn:sum-COM');
INSERT INTO webservice VALUES (6,'urn:adder-COM');
INSERT INTO webservice VALUES (7,'urn:po-processor');
INSERT INTO webservice VALUES (8,'urn:mimetestprocessor');
INSERT INTO webservice VALUES (9,'urn:mimetest');
INSERT INTO webservice VALUES (10,'urn:xmltoday-delayed-quotes');
INSERT INTO webservice VALUES (11,'urn:ejbhello');
INSERT INTO webservice VALUES (12,'urn:soap-unauthorized');

Finally, we need to create a relationship between our principals and our Web Services. Since we have a many-
to-many relationship (many principals can access many Web Services), we need a map table (sometimes
called a join table) to link the two. Each record in the table is the unique intersection of a principal and a Web
Service. Here, the columns are foreign keys to the two other tables, represented by p_id and ws_id (principal
id, and Web Service id, respectively). This pair is also a primary key to the principal_webservice_map
table, as shown below:

Case Study: A Java Filesystem Web Service

621

CREATE TABLE principal_webservice_map (
 p_id int(11) NOT NULL default '0',
 ws_id int(11) NOT NULL default '0',
 PRIMARY KEY (p_id,ws_id)
) TYPE=MyISAM;

The insertion of a record into this table logically defines permissions. That is, the Web Services to which a
particular principal has access. For example, let's grant user markr (principal id: 1) access to Web Service
urn:filesystem (webservice id: 1):

INSERT INTO principal_webservice_map VALUES (1,1);

Let's go ahead and grant this user access to all other Web Services as well:

INSERT INTO principal_webservice_map VALUES (1,2);
INSERT INTO principal_webservice_map VALUES (1,3);
INSERT INTO principal_webservice_map VALUES (1,4);
INSERT INTO principal_webservice_map VALUES (1,5);
INSERT INTO principal_webservice_map VALUES (1,6);
INSERT INTO principal_webservice_map VALUES (1,7);
INSERT INTO principal_webservice_map VALUES (1,8);
INSERT INTO principal_webservice_map VALUES (1,9);
INSERT INTO principal_webservice_map VALUES (1,10);
INSERT INTO principal_webservice_map VALUES (1,11);

We can also define permissions for other users:

INSERT INTO principal_webservice_map VALUES (2,1);
INSERT INTO principal_webservice_map VALUES (2,4);
INSERT INTO principal_webservice_map VALUES (2,7);
INSERT INTO principal_webservice_map VALUES (2,11);
INSERT INTO principal_webservice_map VALUES (3,1);
INSERT INTO principal_webservice_map VALUES (3,5);
INSERT INTO principal_webservice_map VALUES (3,9);
INSERT INTO principal_webservice_map VALUES (4,1);
INSERT INTO principal_webservice_map VALUES (4,2);
INSERT INTO principal_webservice_map VALUES (4,4);
INSERT INTO principal_webservice_map VALUES (4,7);
INSERT INTO principal_webservice_map VALUES (4,11);

The next step in setting up our database is to configure our JDBC datasource. We can use either a native driver
or the JDBC-ODBC bridge driver. In this case, we use the bridge driver
(sun.jdbc.odbc.JdbcOdbcDriver) to make our provider a little more portable. Ideally, we want to use a
native, or Type 4, driver. This is a pure Java driver that uses a native protocol to convert JDBC calls into the
database server network protocol. Using this type of driver, the application can make direct calls from a Java
client to the database. Type 4 drivers, such as the MySQL JDBC Driver, are typically offered by the database
vendor. The native JDBC driver for MySQL is available from http://www.mysql.com/downloads/api-
jdbc.html. Because the driver is written purely in Java, it requires no configuration on the client machine other
than telling the application where to find the driver. When using a Type 4 driver, just remember to add it to the
classpath of your server. In Windows 2000's Control Panel, I've created a System DSN called filesystem
using the MySQL ODBC driver (which is available from http://www.mysql.com/downloads/api-
myodbc.html). The following screenshot shows the configuration options for the ODBC driver on Windows:

Chapter 14

622

Make sure that you set both the username and password to mysql.That's all there is to setting up the SQL
database. Let's move on to writing our pluggable provider's implementation.

Writing a Pluggable Provider
Since the default Java provider does not implement security in any way, we need to create our own pluggable
provider. To do this, we implement the org.apache.soap.util.Provider interface, as all Apache
SOAP providers do. This interface is as follows:

package org.apache.soap.util;

import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;
import org.apache.soap.server.*;

public interface Provider {
 public void locate(DeploymentDescriptor dd,
 Envelope env,
 Call call,
 String methodName,

Case Study: A Java Filesystem Web Service

623

 String targetObjectURI,
 SOAPContext reqContext)
 throws SOAPException;
 public void invoke(SOAPContext req, SOAPContext res) throws SOAPException;
}

The locate() method will be called to allow the provider to verify that the service exists and is available to
process the request. If an error occurs this method should throw a SOAPException. After a successful call to
locate() the SOAP engine will then call invoke() to actually call the service. You may notice that the
invoke method does not have any parameters explicitly pertaining to the Web Service; they are extracted using
the SOAP envelope passed to the RPCRouterServlet via HTTP.

The invoke() method is also responsible for converting any response from the service into a SOAP envelope
and placing it in the res parameter (a SOAPContext). This response is then sent back to the client via HTTP.

Now, let's walk through the implementation of FilesystemProvider, our pluggable provider:

import org.apache.soap.rpc.* ;
import org.apache.soap.server.* ;
import org.apache.soap.server.http.* ;
import org.apache.soap.util.* ;

public class FilesystemProvider implements Provider
{

Variables are declared, followed by the locate() method. Here, we need to grab the HTTP Basic Authentication
information from the headers. This can be obtained from the HttpServletRequest object:

 public void locate(DeploymentDescriptor dd,
 Envelope env,
 Call call,
 String methodName,
 String targetObjectURI,
 SOAPContext reqContext)
 throws SOAPException {

 HttpServlet servlet = (HttpServlet)reqContext.getProperty(
 Constants.BAG_HTTPSERVLET);
 HttpSession session = (HttpSession)reqContext.getProperty(
 Constants.BAG_HTTPSESSION);
 HttpServletRequest req =
(HttpServletRequest)reqContext.getProperty(Constants.BAG_HTTPSERVLETREQUEST);

HTTP encodes the authentication header using Base64 encoding. This string is in the form:

Authorization: Basic username:password

Where username:password has been encoded in Base64. Now, let 's extract the authentication information:

Chapter 14

624

String authorization = req.getHeader("authorization");
authorization = authorization.substring(authorization.indexOf(" "));
byte[] bytes = Base64.decode(authorization);
String decoded = new String(bytes);
int i = decoded.indexOf(":");
String username = decoded.substring(0,i);
String password = decoded.substring(i+1,decoded.length());

Next, we need to connect to our database so we can perform the authentication. I've created a separate data
access class called FilesystemProviderDAO to manage the database connection and abstract out the
authentication and authorization queries. We'll use the isAuthenticated() and isAuthorized()
methods of this class to evaluate the caller's credentials. Our first query validates the user's password. If this
function returns true, we perform our second query, which evaluates his authorization to the Web Service
requested (FilesystemProviderDAO.java):

public boolean isAuthenticated(String username, String password) {
 try {

 // Create our Statement object
 Statement stmt = con.createStatement();

 // Execute the dynamic query
 ResultSet rs = stmt.executeQuery("SELECT password FROM " +
 "principal WHERE username = '" + username + "'");

 // Get the first (and hopefully only) record:
 if (rs.next()) {
 // Validate the password
 if(rs.getString("password").equals(password)) {
 return true;
 }
 }
 return false;
 }
 catch (SQLException e) {
 return false;
 }
 }

Here, we dynamically create the query string by concatenating the username and password parameters with
the SELECT statement. While this works, it's not very efficient under load. The next method,
isAuthorized(), demonstrates the use of a prepared statement to perform its query.

public boolean isAuthorized(String username, String uri) {
 try {
 // Create a Prepared Statement object

 PreparedStatement pstmt =
 con.prepareStatement("SELECT p.username FROM " +
 "principal_webservice_map pwm, " +
 "principal p, webservice ws " +
 "WHERE pwm.p_id = p.id " +
 "AND pwm.ws_id = ws.id " +
 "AND p.username = ? AND ws.uri = ?");

Case Study: A Java Filesystem Web Service

625

Notice the question marks – these are placeholders for the parameters to the query. Unlike the previous
example, we do not dynamically build a query string for prepared statements. We set parameters like this:

 pstmt.setString(1,username);
 pstmt.setString(2,uri);

Next, we execute the query, and compare the password field as before:

 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 if(rs.getString("username").equals(username)) {
 return true;
 }
 }
 return false;
 }
 catch (SQLException e) {
 System.err.println("SQLException: " + e.getMessage());
 return false;
 }
 }

Usually, using a PreparedStatement is preferable, since many database servers can pre-compile or cache
this type of query, improving performance. The database query can be done either way; I just wanted to
demonstrate both techniques. If this function returns true, we can grant the caller access to the Web Service!

Next, the FilesystemProvider class resolves the Web Service, which is referred to as the target object .
Apache SOAP's Service Manager performs this lookup.

ServletConfig config = servlet.getServletConfig();
ServletContext context = config.getServletContext();
ServiceManager serviceManager =
 ServerHTTPUtils.getServiceManagerFromContext(context);

Did we perform a call on a valid method name? Let's check. If not, we need to throw an exception in the form
of a SOAP Fault:

if (!RPCRouter.validCall (dd, call)) {
 throw new SOAPException (Constants.FAULT_CODE_SERVER,
 "Method '" + call.getMethodName () + "' is not supported."); }

Now that we've successfully located the Web Service, let's set a reference to it as our target object:

Object targetObject = ServerHTTPUtils.getTargetObject(serviceManager,
 dd, targetObjectURI, servlet, session, context);

Once our target object has been referenced, we can invoke the service:

Chapter 14

626

public void invoke(SOAPContext reqContext, SOAPContext resContext)
throws SOAPException {

First, we perform the actual call on the target object:

 Response resp = RPCRouter.invoke(dd, call, targetObject, resContext);

Next, we build our SOAP Envelope object. This will contain our response:

 Envelope env = resp.buildEnvelope();

We need an IOWriter object with which to construct our XML declarations. A StringWriter is passed to
the marshall() method to accomplish this:

 StringWriter sw = new StringWriter();
 env.marshall(sw, call.getSOAPMappingRegistry(), resContext);

Our last bit of logic sets the root part of our SOAP response to the StringWriter object we just created,
using our standard UTF-8 encoding:

resContext.setRootPart(sw.toString(),
 Constants.HEADERVAL_CONTENT_TYPE_UTF8);
}

Here, the Provider class invokes the Web Service as identified by the target object and builds a SOAP
Response envelope to encapsulate our return value, encoded in SOAP's XML Envelope format.

Writing the Filesystem Web Service
Coding the actual Web Service is the simple part of this exercise. Here, we will write a Web Service that
exposes several methods, exposing some of the functionality of the java.io.File class as a Web Service.
Since we are using the HTTP Header information in the SOAP context for authentication information, we need
to have access to that information in our Web Service implementation. You will notice each public method has
a parameter of type SOAPContext. These method signatures do not match those expected by the
FilesystemProxy class (shown later in this chapter). If a service's public method with a matching signature
is not found, a second search is done by our FilesystemProvider for a method with an initial parameter
of type SOAPContext.

You should be forewarned that using the SOAP context information in your Web Service
implementation will bind you to Apache SOAP. This is one published issue in the Apache
SOAP release notes, and you are advised to use this technique carefully.

Having access to the incoming SOAPContext provides you with access to the following objects via the
SOAPContext.getProperty() method:

Case Study: A Java Filesystem Web Service

627

q HttpServlet, using the key org.apache.soap.Constants.BAG_HTTPSERVLET

q HttpSession, using the key org.apache.soap.Constants.BAG_HTTPSESSION

q HttpServletRequest, using the key
org.apache.soap.Constants.BAG_HTTPSERVLETREQUEST

q HttpServletResponse, using the key
org.apache.soap.Constants.BAG_HTTPSERVLETRESPONSE

If the original SOAP request was in the SOAP Attachments form, then you can reference the MIME-encoded
attachments using the getBodyPart() method.

Using SOAP Attachments
In this section, you will see how SOAP Attachments are used to send and receive file attachments as part of the
createNewFile() and getFile() methods in our Web Service. Apache SOAP allows data to be passed along
with the XML message without having to embed the data in the XML itself. Since our SOAP message take the form
of a MIME multipart message (this is defined in the specification – see http://www.w3.org/TR/SOAP-
attachments), entities such as files can be embedded inside.

Below is our Web Service implementation. (This is the file Filesystem.java from the code download):

package com.markrichman.filesystem;

import java.io.*;
import java.sql.*;
import java.util.Date;
import java.util.Enumeration;
import javax.activation.*;
import javax.mail.internet.*;
import javax.servlet.* ;
import javax.servlet.http.* ;
import org.apache.soap.encoding.soapenc.Base64;
import org.apache.soap.rpc.SOAPContext;
import org.apache.soap.util.mime.*;
import org.apache.soap.util.xml.*;

/**
 * @author Mark A. Richman
 * @version 1.0
 */
public class Filesystem {

We will go through each of the methods, explaining how the whole attachment mechanism works. Many of the
method names will remind you of those from java.io.File. This is intentional, as our Web Service should
behave as transparently as possible from a developer's point of view. In fact, most of these methods simply
wrap the File class methods entirely.

Chapter 14

628

The copyTo() method simply copies a file to a new location:

public void copyTo(SOAPContext ctx, String sourcePath, String destPath) throws
Exception {
 File fnew = new File(getHomedir(getUsername(ctx)) + "/" + destPath);
 File fold = new File(getHomedir(getUsername(ctx)) + "/" + sourcePath);

 InputStream in = null;
 OutputStream out = null;
 try {
 in = new FileInputStream(fold);
 out = new FileOutputStream(fnew);
 while (true) {
 int data = in.read();
 if (data == -1) {
 break;
 }
 out.write(data);
 }
 in.close();
 out.close();
 }
 finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
 }

Note the two methods below, which are used throughout this class:

q getHomedir – Gets a user's home directory from the database via the FilesystemDAO class

q getUsername – Gets the username from the SOAP Context object

createNewFile creates a new file, relative to the user's home directory (see the DDL above):

public void createNewFile(SOAPContext ctx, String filePath) throws Exception {

 File fnew = new File(getHomedir(getUsername(ctx)) + "/" + filePath);

 if(!fnew.createNewFile()) {
 throw new Exception("File already exists: " + filePath);
 }

Next, we must create two objects: a MimeBodyPart object to get at the SOAP attachment, and a
DataHandler object to get an InputStream for reading. The JavaMail API provides this functionality for
us:

Case Study: A Java Filesystem Web Service

629

 MimeBodyPart mbp;
 DataHandler dh;
 Object o;
 InputStream is;
 FileOutputStream fos = new FileOutputStream(fnew);

 try {
 mbp = ctx.getBodyPart(1);
 dh = mbp.getDataHandler();
 is = dh.getInputStream();

Now, we simply write out the file on the server:

 int c;
 while ((c = is.read()) != -1)
 fos.write(c);
 }
 catch(Exception e) {
 throw new Exception(e.getMessage());
 }

 return;
 }

The delete, method deletes a file:

public boolean delete(SOAPContext ctx, String filePath) throws Exception {
 File fnew = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return fnew.delete();
 }

We can also check the existence of a file on the server using the exists, method:

public boolean exists(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.exists();
}

This method uses the JavaMail API in the reverse way of the createFile, method. Here, we send a file back
to the client using the DataHandler:

public DataHandler getFile(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 if(!f.exists())
 throw new Exception("File not found.");

 try {
 DataSource ds = new ByteArrayDataSource(new File(f), null);
 DataHandler dh = new DataHandler(ds);

Chapter 14

630

 return dh;
 }
 catch(Exception e) {
 System.err.println(e.getMessage());
 }
}

length, gets a file's length in bytes:

public long length(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.length();
}

getParent, gets a file's parent directory:

public String getParent(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.getParent();
}

isDirectory, asks if a file descriptor is a directory.

public boolean isDirectory(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.isDirectory();
}

isFile, tests to see whether the file is a normal file. A file is normal if:

q It is not a directory

q It satisfies other operating system-dependent criteria (i.e. symbolic links on Unix)

Any non-directory file created by a Java application is guaranteed to be a normal file.

public boolean isFile(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.isFile();
}

lastModified, returns the time that the file denoted by the filePath was last modified:

public long lastModified(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.lastModified();
}

Case Study: A Java Filesystem Web Service

631

list returns an array of strings naming the files and directories in the directory, assuming the filename we
give represents a directory. This again simply encapsulates the functionality of java.io.File:

public String[] list(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.list();
}

mkdir creates a directory on the server, given a parent directory specified by filePath:

public boolean mkdir(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.mkdir();
}

mkdirs creates the directory named by the filePath , including any necessary parent directories that do not
already exist:

public boolean mkdirs(SOAPContext ctx, String filePath) throws Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.mkdirs();
}

renameTo renames a file:

public boolean renameTo(SOAPContext ctx, String filePath, String newName) throws
Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.renameTo(new File(getUsername(ctx) + "/" + newName));
}

setLastModified sets the last-modified time of a file or directory:

public boolean setLastModified(SOAPContext ctx, String filePath, long time) throws
Exception {
 File f = new File(getHomedir(getUsername(ctx)) + "/" + filePath);
 return f.setLastModified(time);
}

Here is our getUsername() method. It's important to understand how the HTTP header information is
extracted, so we'll go into some detail here. We are particularly interested in the Authorization field in
the HTTP headers. We can access this simply by calling getHeader() on the request object:

protected String getUsername(SOAPContext ctx) {
 HttpServletRequest req =
(HttpServletRequest)ctx.getProperty("HttpServletRequest");
 String authorization = req.getHeader("Authorization");

For HTTP Basic Authorization, the authorization header is of the form:

Chapter 14

632

Authorization: Basic {Base64-encoded username & password}

Where the username and password look like "username:password" prior to encoding with the Base64
algorithm. Using some fancy substring manipulation, we get the encoded username and password string:

 authorization = authorization.substring(authorization.indexOf(" ")); //
strip "Basic "

Next, decode it using Base64.decode():

 byte[] bytes = Base64.decode(authorization);
 String decoded = new String(bytes);

The username is what we're after here. It's on the left side of the colon:

 int i = decoded.indexOf(":");
 String username = decoded.substring(0,i);
 return username;
 }

getHomedir gets the user's home directory via the FilesystemDAO data access object:

 /**
 * Gets the user's home directory via the FilesystemDAO
 * data access object.
 */
 protected String getHomedir(String username) throws Exception {
 FilesystemDAO dao = new FilesystemDAO();
 try {
 return dao.getHomedir(username);
 }
 catch (Exception e) {
 throw new Exception(e.getMessage());
 }

 }

}

Once compiled, you can add Filesystem.class to your classpath, either under the
com/markrichman/filesystem/ path, or in a .jar file containing this package structure. We'll cover
packaging a bit later.

Deploying Web Services Using Pluggable
Providers

Web Services can be deployed via the command line or through the Apache SOAP Web Admin. Make sure
your web server is running, and launch http://localhost:8080/soap/ from your browser. Click Run the
admin client when you see the welcome screen. You should then see the following screen:

Case Study: A Java Filesystem Web Service

633

This screen shows the three options that allow you to list, deploy, and un-deploy your Web Services. Since we
have no Web Services deployed yet, go ahead and click Deploy. You will be presented with the following
screen:

Chapter 14

634

Let's look at each property in the deployment screen:

Property Description

ID A URN that uniquely identifies the service to clients. It must be unique
among the deployed services, and be encoded as a URI. We commonly
use the format: "urn:UniqueServiceID". It corresponds to the
target object ID, in the terminology of the SOAP specification. I chose
urn:filesystem, but you can really pick any locally unique string
you like. See http://www.ietf.org/rfc/rfc2141.txt for a full description
of the URN syntax.

Scope Defines the lifetime of the object serving the invocation request. This
corresponds to the scope attribute of the <jsp:useBean> tag in JSP.
This tag can have one of the following values:

q Request – a new object is created for each request, and is
available for the complete duration of the request.

q Session – a single instance of the object is created and available
for the complete duration of the session.

q Application – a single instance of the object is created and
available for the complete duration of the application. That is,
until the server is shut down.

Method list Defines the names of the method that can be invoked on this service
object. We have the following methods: copyTo, createNewFile,
delete, exists, getFile, getParent , isDirectory, isFile,
lastModified, length, list, mkdir, mkdirs, renameTo, and
setLastModified.

Provider type Indicates whether the service is implemented using Java or a scripting
language. We obviously are using Java, and our provider's full class
name is:
com.markrichman.filesystem.FilesystemProvider.

 Provider class (for Java
services)

Fully specified class name of the target object servicing the request.
Our pluggable provider is called
com.markrichman.filesystem.Filesystem.

We can skip the rest of the options for the purposes of this chapter. Once you've entered the fields, scroll down
and click the Deploy button at the bottom of the window. You should see a screen that indicates that the
service has been deployed. If you click on the List button, you'll see the URN of your Web Service is listed.
Click on its link and you should see the deployed service information screen:

Case Study: A Java Filesystem Web Service

635

Alternatively, we can deploy the Web Service from the command prompt. To do this, we use a deployment
descriptor in XML format. The pluggable provider is simply placed as the full classname in the deployment
descriptor's type attribute (DeploymentDescriptor.xml):

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:filesystem">
 <isd:provider type="com.markrichman.filesystem.FilesystemProvider"
 scope="Session"
 methods="copyTo createNewFile delete exists getFile getParent
isDirectory isFile lastModified length list mkdir mkdirs renameTo
setLastModified">
 <isd:java class="com.markrichman.filesystem.Filesystem"/>
 </isd:provider>
</isd:service>

Use the deployment descriptor above to fully describe the service. To deploy the Web Service from the
command line:

java org.apache.soap.server.ServiceManagerClient
http://localhost:8080/soap/servlet/rpcrouter deploy DeploymentDescriptor.xml

The ServiceManagerClient is SOAP client provided with the distribution that communicates with the
ServiceManager. Your Web Service will be configured and registered by the Service Manager automatically.

Chapter 14

636

Writing the Filesystem Proxy Class
Invoking a Web Service using the Apache SOAP client API is relatively straightforward. Here, we have
created a client proxy class called FilesystemProxy to help abstract out a lot of the SOAP internals. You
will use this class from your client applications to interact with the Filesystem Web Service. Apache SOAP
Web Services are invoked using the Call object (org.apache.soap.rpc.Call). This object is
configured with the endpoint's URL, the target object's URI, method name, and any parameters. In this
example, the URL we connect to will be http://localhost:8080/soap/servlet/rpcrouter .
Remember earlier in this chapter, we configured the server to look for SOAP services on port 8080, with
context /soap. This URL is bound to org.apache.soap.server.http.RPCRouterServlet on the
server (see /webapps/soap/WEB-INF/web.xml). We also construct a SOAPHTTPConnection object to
capture the HTTP basic authentication information. The URI of the method call element is used as the object
ID on the remote side. Since our Filesystem service takes no parameters, our params object is empty (you
will notice, however, that the Filesystem Web Service captures the SOAPContext parameter transparently).
We can now call the invoke() method of our Call object, which returns a Response object. If any
exceptions were thrown on the server, the Fault object will contain those details. The resp object will
encapsulate the SOAP response. Calling the Response.getReturnValue().getValue() will display
the return value of an object. All other types must be cast from object to their expected types. The following
code is available from the download as FilesystemProxy.java. With the Java Activation Framework and
JavaMail on your classpath, you can compile the code with the following command:

javac com/markrichman/filesystem/FilesystemProxy.java

Again, let's walk through this class's implementation. As the majority of the functions in this section are fairly
repetitive, I will just display the most interesting ones:

package com.markrichman.filesystem;

import java.io.*;
import java.net.URL;
import java.util.Vector;
import javax.activation.*;
import javax.mail.internet.*;
import org.apache.soap.Constants;
import org.apache.soap.rpc.Call;
import org.apache.soap.Fault;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.rpc.Response;
import org.apache.soap.transport.http.SOAPHTTPConnection;
import org.apache.soap.util.mime.*;

public class FilesystemProxy {

The createNewFile() method sets up our Call object as usual. Notice the attach() method. This is
responsible for the MIME functionality used in the SOAP with Attachments specification.

Case Study: A Java Filesystem Web Service

637

public boolean createNewFile(String filePath, File file) throws Exception {
 Call call = new Call ();
 call.setTargetObjectURI(targetObjectURI);
 call.setMethodName("createNewFile");
 SOAPHTTPConnection hc = new SOAPHTTPConnection();
 hc.setUserName(username);
 hc.setPassword(password);
 call.setSOAPTransport(hc);
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 Vector params = new Vector ();
 params.addElement (new Parameter("filePath", String.class, filePath, null));
 call.setParams(params);

 System.out.println("Attaching file: " + file.getName());
 attach(file,call); // MIME Attachment

 Response resp = call.invoke (new URL(url), "");

 if (resp.generatedFault()) {
 Fault fault = resp.getFault ();
 System.out.println ("Ouch, the call failed: ");
 System.out.println (" Fault Code = " + fault.getFaultCode ());
 System.out.println (" Fault java.lang.String = " + fault.getFaultString
());
 throw new Exception(fault.getFaultString());
 }
 else {
 return true;
 }
 }

Here is the code to actually perform the download. We get the file using the DataHandler. We use a protected
utility function called detach() to assist us:

 public void getFile(String filePath, String local) throws Exception {
 Call call = new Call ();
 call.setTargetObjectURI(targetObjectURI);
 call.setMethodName("getFile");
 SOAPHTTPConnection hc = new SOAPHTTPConnection();
 hc.setUserName(username);
 hc.setPassword(password);
 call.setSOAPTransport(hc);
 Vector params = new Vector ();
 params.addElement (new Parameter("filePath", String.class, filePath, null));
 call.setParams (params);

 Response resp = call.invoke (new URL(url), "");

 if (resp.generatedFault ()) {

Chapter 14

638

 Fault fault = resp.getFault ();
 System.out.println ("Ouch, the call failed: ");
 System.out.println (" Fault Code = " + fault.getFaultCode ());
 System.out.println (" Fault java.lang.String = " + fault.getFaultString
());
 throw new Exception(fault.getFaultString());
 }
 else {
 Parameter result = resp.getReturnValue ();
 System.out.println (result.getValue());
 File f = new File(local);
 detach(resp,f);
 }
 }

Another interesting method – here we pass back a string array. Apache SOAP handles this for us
automatically. List all the files in a directory, returned as a string array:

 public String[] list(String filePath) throws Exception {
 Call call = new Call ();
 call.setTargetObjectURI(targetObjectURI);
 call.setMethodName("length");
 SOAPHTTPConnection hc = new SOAPHTTPConnection();
 hc.setUserName(username);
 hc.setPassword(password);
 call.setSOAPTransport(hc);
 Vector params = new Vector ();
 params.addElement (new Parameter("filePath", String.class, filePath, null));
 call.setParams (params);

 Response resp = call.invoke (new URL(url), "");

 if (resp.generatedFault ()) {
 Fault fault = resp.getFault ();
 System.out.println ("Ouch, the call failed: ");
 System.out.println (" Fault Code = " + fault.getFaultCode ());
 System.out.println (" Fault java.lang.String = " + fault.getFaultString
());
 throw new Exception(fault.getFaultString());
 }
 else {
 Parameter result = resp.getReturnValue ();
 System.out.println (result.getValue());
 String[] s = (String[])result.getValue();
 return s;
 }
 }

Here is our utility function for attaching a file to our Call object. This should look very familiar, however we
add one line of code to add the MimeBodyPart to the Call object. The SOAP framework will marshall the
binary attachment for us:

Case Study: A Java Filesystem Web Service

639

 protected void attach(File file, Call call) {
 try {
 DataSource ds = new ByteArrayDataSource(file,null);
 DataHandler dh = new DataHandler(ds);
 MimeBodyPart part = new MimeBodyPart();
 part.setDataHandler(dh) ;
 call.addBodyPart(part);
 }
 catch(Exception e) {
 System.err.println(e.getMessage());
 }

 }

Now, we can detach the MIME attachment. We simply get at the MimeBodyPart; since we only have one
attachment in this instance, we pass getBodyPart() a parameter of 1. The attachment is saved to a local file,
specified by f.

 protected void detach(Response resp, File f) {
 // Write the data
 try {
 MimeBodyPart mbp;
 DataHandler dh;
 Object o;
 InputStream is;
 FileOutputStream fos = new FileOutputStream(f);

 mbp = (MimeBodyPart)resp.getBodyPart(1);
 dh = mbp.getDataHandler();
 is = dh.getInputStream();

 int c;
 while ((c = is.read()) != -1)
 fos.write(c);
 }
 catch(Exception e) {
 System.err.println(e.getMessage());
 }
}
}

Writing the Filesystem Client Class
The Filesystem client class is relatively simple. It simply instantiates the FilesystemProxy class, and
exercises a few of its functions. Feel free to modify this implementation to test on your own. You'll want to
specify a file on your local system, represented here as a.gif. The following code is available in the code
download as FilesystemClient.java:

Chapter 14

640

package com.markrichman.filesystem;

public class FilesystemClient {

 public static void main (String[] args) {
 try {
 FilesystemProxy fs = new FilesystemProxy();
 fs.setUsername("markr");
 fs.setPassword("Jsdh8qSD");

 for(int i=0;i<10;i++) {
 if(fs.exists(i+"a.gif"))
 continue;
 fs.createNewFile(i+"a.gif", new java.io.File("a.gif"));
 System.out.println("Last Modified: " +
fs.lastModified(i+"a.gif"));

We specify the new last-modified time, measured in millis econds since the epoch (00:00:00 GMT, January 1,
1970):

 fs.setLastModified(i+"a.gif", 153055769);
 System.out.println("New Last Modified: " +
fs.lastModified(i+"a.gif"));
 System.out.println(fs.length(i+"a.gif"));
 fs.copyTo(i+"a.gif", i+"xa.gif");
 fs.delete(i+"a.gif");
 fs.delete(i+"xa.gif");
 }
 }
 catch(Exception e) {
 System.err.println(e.getMessage());
 }
 }
}

Packaging the .jar File
I prefer to use a .jar file, so I can package my Web Service, pluggable provider, and database classes all
together. We create our .jar file as follows:

jar cvf Filesystem.jar com/markrichman/filesystem/*.class

The resulting .jar file will be structured like this:

META-INF/MANIFEST.MF
com/markrichman/filesystem/Filesystem.class
com/markrichman/filesystem/FilesystemClient.class
com/markrichman/filesystem/FilesystemDAO.class
com/markrichman/filesystem/FilesystemProvider.class
com/markrichman/filesystem/FilesystemProxy.class

Dropping this .jar file into Tomcat's /lib folder automatically adds it to the classpath on startup.

Case Study: A Java Filesystem Web Service

641

Trying It Out
There are a few minor prerequisites before you fire up the client. You need to create a folder called
C:\users. This is the homedir value in the principal table specified in Filesystem.ddl. The test file
a.gif will be uploaded and saved there by the web service . The a.gif file is a test file - you can alter
FilesystemClient.java to point to whichever file you like on your hard drive.

To execute the FilesystemClient, run the following at the command prompt:

>java com.markrichman.filesystem.FilesystemClient

If all goes well, the client will be authenticated against the Filesystem Web Service. You should also see
some informational text in the web server's console. Now, test out what happens when you use the wrong
password, or delete the reference in the principal_webservice_map table in the database. There is a Web
Service called urn:soap-unauthorized in the database for which no user has permissions. Try using this
as the parameter for call.setTargetObjectURI() . Bad username/password combinations generate the
fault string Bad password, and authorization failures generate a User not authorized fault. I'll leave it as an
exercise to the reader to explore the strength of this mechanism.

Summary
I hope you enjoyed this tour of the features and facilities offered by the Apache SOAP Toolkit. The intention
throughout this case study has been to provide a solid starting point for you to explore the areas of Web
Service development that are of interest to you. Hopefully, this chapter has inspired you to develop unique
Web Services of your own with Apache SOAP and Java.

For further work, here are some suggestions on how to build on this case study:

q Implement the data access in LDAP, as opposed to JDBC.

q Create a wireless device application that performs the client and proxy functionality. One application
here is virtual local storage for handheld devices with no local storage of their own.

q Implement an offsite backup solution via SOAP and HTTP.

q Build upon this service to add versioning for your own configuration management system.

Chapter 14

642

