=

Case Study: A Java Filesystem Web

Service

So far in this book, we've seen how Web Services provide a powerful way to expose business functionality
over the Internet. Now, let's take alook at a practical implementation of a unique Web Service using the
Apache SOAP Toolkit and Java. This case study describes the tools and the object model of the Apache SOAP
Toolkit, and then demonstrates an implementation of a functional Filesystem Web Service. All the required
source code for this chapter is available from the Wrox web site at: http://www.wrox.com/.

The Filesystem Web Service

The Filesystem Web Service implements a virtual filesystem over HTTP. Using SOAP Messaging with
Attachments to wrap binary and text files, distributed applications can manipulate files and directories with
location transparency and security. The benefits to this Web Service are:

Q

000 0 D

Secure remote storage and retrieval of files without investing in quickly outdated hardware
Virtual archive and automated/unattended backups

Access to data anywhere in the world

Virtually unlimited file storage

Cross-platform interoperability

Operating system and location transparency

Some target users for this Web Service may be:

Chapter 14

Q Wireless application providers and wireless device users who have no local storage

Q Organizations that want to provide a personal backup solution to their users but cannot afford to
install zip/tape drives in every computer

O

Internet/Application Service Providers (I1SPs, ASPs) who want to provide paid services to their
customers

Intranet users who require self-service backup/restore capabilities

People who travel, and need access to their files on the road
Individuals with no local backup devices

Users who need data archived in a secure manner

Individuals who require additional disk space due to small local hard drives

0O 0D 0O 0 D

Telecommuters

Q Organizations that require remote backup/disaster recovery

With such a broad range of possible applications in mind, one concern for a Web Service such as thisis
security.

Why Do We Need Security for Web Services?

When developing web services, specifically those that transact sensitive data, you should verify that only
authorized individuals utilize your web service. It makes sense that a Web Services protocol, like SOAP
should provide a method for verifyingthe identity of its user.

Upon inspection of the SOAP specification, you will notice there is no mention of security. Why create a
protocol that intentionally omits one of the prime facets of distributed computing? SOAP is actually
incomplete by design. Because the SOAP specification doesn't currently address issues related to security, we
utilize the built-in security features of the underlying transport protocols that are used to deliver SOAP
messages. Since most Web Services rely on the HTTP protocol, we can use any of its various security
implementations. Web servers, firewalls, and the like can use the information provided by HTTP to validae
usernames and passwords (authentication) and grant or deny their access to resources based on the caller's
identity (authorization). With SOAP on top of HTTP, we can pass username and password information in the
HTTP header. The HTTP 1.1 Specification (http://www.ietf.org/rfc/rfc2616.txt) defines several challenge
response authentication mechanisms, which can be used by a server to challenge a client request and by a
client to provide authentication information. The general framework for access authentication, and the
specification of basic and digest authentication, are defined in "HTTP Authentication: Basic and Digest
Access Authentication” (http://www.ietf.org/rfc/rfc2617.txt).

Ultimately, a future SOAP specification should provide support for many of the available standard transport
layer security mechanisms, such as basic, digest, and cryptographic messages over SSL (Secure Socket Layers,
see http://home.netscape.com/eng/ssl3/index.html). The server invoking the Web Service should perform
authentication and authorization, as opposed to relying on the web server or other hardware. In this fashion,
we will have a robust framework through which we expose our services. These issues are especially important
if you deal with sensitive information, or wish to charge a fee for your Web Services.

614

Case Study: A Java Filesystem Web Service

Apache SOAP and the Pluggable Provider

The Apache SOAP project implements a SOAP Web Services framework using Java. The bridge between the
SOAP engine and the service being invoked is called the provider. The following diagram shows how
messages flow through Apache SOAP, and where the pluggable provider fits in:

Web Service
A Implementatian

hna GOAR -
EBpaches S50 Web Service

mplementatian

HITP Remguest

-+

APLCSersiet e Froder

i
%

Web Seruce

HITP Hesponse mplementakian

+ Web Service
mplementatian

The provider isresponsible for:

Q Locating, loading, and invoking the service
Q Converting the result from the service into a SOAP envelope

Q Implementing specialized functionality outside the scope of the SOAP specification

Here, our specialized functionality will be security. By default the SOAP engine will use the

RPCJavaPr ovi der class as the provider for RPC services, and the MsgJavaPr ovi der class for Message
services. RPCJlavaPr ovi der simply loads the appropriate class, invokes the desired method and converts
any result into a SOAP envelope. Our pluggable provider will use the Java Daabase Connectivity (JDBC)
interface to authenticate and authorize users against the SOAP service before invoking it. The pluggable
provider demonstrated in this chapter will implement authentication and authorization through the use of a
JDBC interface to a database of user profiles and Web Services. The user profiles contain username/password
pairs for authentication, and a mapping of usernames to Web Services for authorization. The use of a SQL
datasource will be a familiar paradigm for Java devel opers who already make use of database driven security.

Setting Up The Server

In Chapter 10, we learned how to configure Apache SOAP and Tomcat. The examples in this chapter run
unmodified on Apache Tomcat (available from http://jakarta.apache.org/tomcat/index.html). Remember to
install the Xerces-J XML parser (http://xml.apache.org/xerces-j/). You will also need JavaMail (available
from http://java.sun.com/products/javamail/; remember to specify the location of nai | . j ar on your
classpath) and the JavaBeans Activation Framework (available from
http://java.sun.com/products/javabeans/glasgow/jaf.html; you'll need to setact i vati on. j ar on your
classpath). These two packages are necessary to handle the file attachment and MM E-encoding mechanisms
of this example. To compile the servlet classes, you will need the Java 2 SDK Enterprise Edition (see
http://java.sun.com/j2ee/index.html). Some samples that come with Apache SOAP, such as

615

Chapter 14

the Calculator sample, require the Bean Scripting Framework (from
http://oss.software.ibm.com/developerworks/projects/bsf) and JavaScript (which is available with Mozilla
Rhino from http://www.mozilla.org/rhino/). If you would liketo try these as well, placebsf . j ar and

j s.jar inyour classpath. Don't forget to add soap. j ar to the classpath aswell. Ensure that the . j ar files
are not only referenced in the classpath environment variable, which allows them to be utilized at compilation
time, but that copies of them are placed in Tomcat's / | i b folder, so that they are on the server's classpath as
well. In anutshell, here's how to hook it all up:

Some systems require you to set the TOMCAT_HOVE (or CATALI NA_HOVE for Tomcat 4.0) environment
variable, which points to the directory containing Tomcat.

Set Tomcat's classpath with xer ces. j ar at the front. Inbi n/ t ontat . bat, findthe: set Cl asspath
section, and modify it to look like this:

:setd asspat h
set CP=<path to Xerces-J>\I|ib\ xerces.jar; YWdOMCAT_HOVE% cl asses

On Unix systems, find theexport CLASSPATH statementinbi n/t ontat . sh, and add this line right
beforeit:

CLASSPATH=<pat h to Xerces-J>/li b/ xerces.|j ar: ${ CLASSPATH}

Next, make sure Tomcat is running on port 8080. Y ou can do this by verifying that conf / ser ver . xm
contains a section like this:

<Connect or cl assName="or g. apache. t ontat . servi ce. Pool TcpConnect or" >
<Par anet er nanme="handl er"
val ue="org. apache. t ontat . servi ce. http. H t pConnect i onHandl er "/ >
<Par anmet er nane="port" val ue="8080"/>
</ Connect or >

Finally, add a server context for Apache SOAP. Inside the <Cont ext Manager >tag, add the following
section:

<Cont ext pat h="/soap"
docBase="c: / soap- 2_2/ webapps/ soap"
crossCont ext ="t rue"
debug="0"
rel oadabl e="true"
trusted="fal se" >
</ Cont ext >

The <Cont ext > section maps to a path within Tomcat in which aweb application exists.

The attributes in the above element are described below:

Attribute Description

pat h The prefix of an HTTP request, instructing Tomcat which application context to
use. This attribute always begins with a forward slash ("/").

docBase Points to a directory which will be the root of this web application.

r el oadabl e During development, setting this value to true enables Tomcat to rd oad changes

to your source code. Thisistime consuming, and reportedly error-prone. In a
production environment, this should be set to false.

616

Case Study: A Java Filesystem Web Service

Attribute Description

trusted Enables access to Tomcat's internal objects. Most applications will set thisto
false.

debug A value of "0" suppresses all console output. A value of "9" implies verbose
mode.

If you set up everything correctly, running bi n/t ontat start should display this console:

Tomcat 3.2

:H3 — GContextManager: Adding context GCtx{ Aexamples »
:A3 — GContextManager: Adding context Gtx{ ~soap >
—A7—19 11:24:83 — ContextManager: Adding context GCtx{ ~admin »
»ting tomcat. Check logs-tomcat.log for error messages
-A7-19 11:24:1% — ContextManager: Adding context Ctx{ >
stest D

Point your browser to http://localhost:8080/ to verify that everything is up and running. Y ou should see the
following page:

4} Tomcat v3.2.2 - Microsoft Internet Explorer ;i o =]]

J File Edt ‘Wiew Favorites Tools Help ﬁ
J dBack ~ = - () at | Qisearch [GlFavorites & AHistory ||%v = -

J Address I@ hitp: | flocalhost: 8080/indes: j @ao

|»

Tomcat

Version 3.2.2

/ Thiz 15 the default Tomeat home page. This page serves as a quick reference guide to
related resources and is located at:

o </path/to/tomcat>/webapps/RO0OT/index. html
Tncluded wathin this release are functional examples with associated source code, APT documentation for
servlets and TSP, a README, a technical FAQ on this release and an assottment of jar files which are pre-
requisttes for contmued development of web technologies mcluding TSP and Serviets.

Ezamples:

« JSP Examples
+ Servlet Examples

|@ ’_’_ (B Local intranet 4

To stop Tomcat, run bi n/ shut down , or just kill the command window.

617

Chapter 14

Setting Up The Database

For authentication and authorization, we will use a SQL database. Specifically, |'ve chosen MySQL (freely
available from http://sourceforge.net/projects/mysql/), although any SQL database will work. MySQL,
aside from being free, is very fast, and runs on both Windows and Linux. There is an excellent article on
About.com entitled How to install and configure MySQL for Windows. The URL for thisis
http://perl.about.com/library/weekly/aal11400a.htm. For this example, when you are setting up MySQL,
please set both the username and password to mysq|l.

This type of database-driven authentication should be familiar if you've ever set up any type of security on aweb
site. Our database schemais relatively simple: atable to store our principals and credentials (usernames and
passwords), atable to store our Web Service identifiers (URNS), and atable to map the principals and Web Services.
We use a many-to-many relationship between principals and Web Services. We want to relate many users to many
Web Services. In order to decrease the duplication of data, we'll create atable consisting of nothing but primary keys
from the two other tables, caled pri nci pal _webser vi ce_map. Here we adhere to the Fourth Normal Form
(4NF), sometimes referred to as Boyce-Codd Normal Form (BCNF). Thisform is often overlooked, but it's
important when dealing with many-to-many relations. In a nutshell, this means that any given relation may not
contain more than one multivalued attribute. This concept is beyond the scope of this chapter, so | leave it asan
exercise to the reader to discover itsimplications. Most of these rules were defined in a paper by E.F. Codd entitled
Further Normalization of the Data Base Relational Model (this can be found in the book Data base systems, R.
Rustin, ed., Prentice-Hall, 1972). Mathematicians later developed other normalization rules, such as 4NF, 5NF, etc.
Thereisagood tutorial on database schema normalization at:

http://www.phpbuilder.com/columns/barry20000731.php3.
For the data definition language (DDL) in our example, we will use MySQL's syntax. ThisDDL can easily be
ported to any SQL database with minor changes. To create our database using MySQL, place the file

Fi | eSyst em ddl inthebi nfolder of your MySQL directory (by default thisisC:. \ mysql \ bi n). Change
the current directory to thebi n folder of your MySQL directory, and start the server with this command:

>mysqld

Then, execute the following command from the command prompt to create the database using the DDL:
>mysql < FileSystem.ddl

The following command will display that the new database structure was created successfully:
>mysqlshow filesystem

Whenever you restart MySQL, navigate to the MySQL bi n folder inthe command prompt, start the server,
and enter the command:

>mysql -u mysql/mysql filesystem

Where mysql/mysql are your username and password. This ensures that the f i | esyst emdatabase is
accessible from the database server. To check that it is accessible, enter:

>select * from principal;

618

Case Study: A Java Filesystem Web Service

at the mysql prompt, which will display the pri nci pal tableof thefi | esyst emdatabase:

wand Frampl - mysal -w mysylimpal lismpaien

L monitor, Comman
d is 2 to serv

* help. Tvpe

johns
linust

Let'swalk through the DDL for some further explanation of the schema (Fi | eSyst em ddl in the code
download for this book):

Thefirst line creates an empty database structure, simply called "filesystem", assuming one does not already
exist with the same name:

CREATE DATABASE | F NOT EXI STS fil esystem

Under Unix, database names are casesensitive (unlike SQL keywords), so you must always refer to your
database asf i | esyst emnot as Fi | esyst em, FI LESYSTEM or some other variant. Thisis also true for
table names. Under Windows, this restriction does not apply, although you must refer to databases and tables
using the same case throughout a given query.

Creating a database does not select it for use; you must do that explicitly. To make f i | esyst emthe current
database, we USE the database:

USE fil esystem

The hardest part of creating a database is choosing a sound structure. What tables and columns best suit our
application? Our users, or principals, require atable of their own:

' CREATE TABLE princi pal (
idint(11) NOT NULL auto_incremnent,
usernane varchar(32) NOT NULL default "',
password varchar(32) default "',
homedi r varchar (255) NOT NULL default '',
PRI MARY KEY (id),
UNI QUE KEY username (usernane)

) TYPE=M/| SAM

619

Chapter 14

We need some way to index and uniquely identify the principals. To that end, we create a primary key called
i d, whichwesettoaut o_i ncrenment (alsocaledi dentity onmany systems). We also create two fields for
user name and passwor d, which are self-explanatory, and a third called homedi r , which will contain the
physical directory on the web server which will host this user's files. Users also need to be unique, so we assign a
UNI QUE KEY totheuser name field. Finaly, wetell MySQL to use the Myl SAMdatabase type. Thisisthe
default, but you may choose from other database types, such as Ber kel eyDB, or | nnoDB. These other types
support transactions with locking mechanisms, which are not necessary here, since our application is mostly read-
only.

Next, let's create afew users for our Web Service by performing an | NSERT into the table we just created:

I NSERT | NTO pri nci pal VALUES (1, ' markr',''Jsdh8qSD ','c:/users/markr');
I NSERT | NTO princi pal VALUES (2,'johns',"iJ823hdV ,'c:/users/johns');

I NSERT | NTO princi pal VALUES (3,'linust','js89PndVs','c:/users/linust');
I NSERT | NTO princi pal VALUES (4,'larryw ,'58Jnfjh4g', ' c:/users/larryw);

The passwords can be anything you like. Here, we've just used dummy data. Next, we need to create atable to
hold references to our deployed Web Services. Since Apache SOAP uses a URI to uniquely identify Web
Services, it makes sense for us to use the same identifiers in our database. In the webser vi ce table, we
create two columns: i d and ur i . This pair is also unique, so we create a composite primary key consisting of
both columns. Y ou will notice below that the PRI MARY KEY clause contains both columns as parameters. Again,
we use the default MyI SAMdatabase type:

CREATE TABLE webservi ce (
idint(11) NOT NULL auto_increnent,
uri varchar(64) NOT NULL default "',
PRI MARY KEY (id,uri)

) TYPE=MyI SAM

Next, we insert the URI for our Web Service, urn: fil esystem

I NSERT | NTO webservi ce VALUES (1, 'urn:filesystem);
We can also insert some of the Web Services that come with Apache SOAP:

| NSERT | NTO webservi ce VALUES (2,' urn: AddressFetcher');

I NSERT | NTO webservi ce VALUES (3,' urn: Addr essFet cher2');

I NSERT | NTO webservi ce VALUES (4, ' urn: xm-soap-deno-cal cul ator');
I NSERT | NTO webservi ce VALUES (5,"'urn:sumCOM);

I NSERT | NTO webservi ce VALUES (6, ' urn: adder -COM) ;

| NSERT | NTO webservi ce VALUES (7,'urn:po-processor');

I NSERT | NTO webservi ce VALUES (8, ' urn: m et est processor');

I NSERT | NTO webservi ce VALUES (9, ' urn:mnetest');

I NSERT | NTO webservi ce VALUES (10, ' urn: xm t oday- del ayed-quotes');
| NSERT | NTO webservi ce VALUES (11, 'urn:ejbhello');

I NSERT | NTO webservi ce VALUES (12, ' urn: soap-unaut hori zed');

Finally, we need to create a relationship between our principals and our Web Services. Since we have a many -
to-many relationship (many principals can access many Web Services), we need a map table (sometimes
called ajoin table) to link the two. Each record in the table is the unique intersection of a principal and a Web
Service. Here, the columns are foreign keys to the two other tables, represented by p_i d andws_i d (principal
id, and Web Service id, respectively). This pair is also a primary key to thepri nci pal _webser vi ce_nmap
table, as shown below:

620

Case Study: A Java Filesystem Web Service

CREATE TABLE pri nci pal _webservi ce_map (
p_id int(11) NOT NULL default 'OQ',
ws_id int(11) NOT NULL default 'O0',
PRI MARY KEY (p_id, ws_id)

) TYPE=My| SAM

The insertion of arecord into this table logically defines permissions. That is, the Web Services to which a
particular principal has access. For example, let's grant user mar kr (principal id: 1) access to Web Service
urn: fil esystem(webserviceid: 1):

I NSERT | NTO pri nci pal _webservi ce_map VALUES (1, 1);

Let's go ahead and grant this user access to all other Web Services as well:

| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT

I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri

nci pal _webservi ce_nmap
nci pal _webservi ce_map
nci pal _webser vi ce_nap
nci pal _webservi ce_nmap
nci pal _webser vi ce_map
nci pal _webser vi ce_nap
nci pal _webservi ce_nmap
nci pal _webservi ce_map
nci pal _webservi ce_nap
nci pal _webser vi ce_map

We can also define permissions for other users:

| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT
| NSERT

I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri
I NTO pri

nci pal _webservi ce_nmap
nci pal _webser vi ce_nap
nci pal _webservi ce_nmap
nci pal _webservi ce_map
nci pal _webser vi ce_nap
nci pal _webservi ce_nmap
nci pal _webservi ce_map
nci pal _webser vi ce_nap
nci pal _webservi ce_nmap
nci pal _webservi ce_map
nci pal _webser vi ce_nap
nci pal _webservi ce_map

VALUES (1,2);
VALUES (1,3);
VALUES (1, 4);
VALUES (1,5);
VALUES (1, 6);
VALUES (1,7);
VALUES (1, 8);
VALUES (1,9);
VALUES (1, 10);
VALUES (1,11);

VALUES (2, 1);
VALUES (2, 4);
VALUES (2,7);
VALUES (2, 11);
VALUES (3, 1);
VALUES (3,5);
VALUES (3,9);
VALUES (4,1);
VALUES (4,2);
VALUES (4, 4);
VALUES (4,7);
VALUES (4, 11);

The next step in setting up our database is to configure our JDBC datasource. We can use either a native driver
or the JIDBC-ODBC bridge driver. In this case, we use the bridge driver

(sun. j dbc. odbc. JdbcCQdbcDri ver) to make our provider alittle more portable. Ideally, we want to use a
native, or Type 4, driver. Thisis a pure Java driver that uses a native protocol to convert JDBC callsinto the
database server network protocol. Using this type of driver, the application can make direct calls from a Java
client to the database. Type 4 drivers, such as the MySQL JDBC Driver, are typically offered by the database
vendor. The native JDBC driver for MySQL is available from http://www.mysql.com/downloads/api-
jdbc.html. Because the driver is written purely in Java, it requires no configuration on the client machine other
than telling the application where to find the driver. When using a Type 4 driver, just remember to add it to the
classpath of your server. In Windows 2000's Control Panel, |'ve created a System DSN calledfi | esyst em
using the MySQL ODBC driver (which is available from http://www.mysql.com/downloads/api-
myodbc.html). The following screenshot shows the configuration options for the ODBC driver on Windows:

621

Chapter 14

TDX myzgl Driver default configuration x|
Thiz iz in public domain and comes with MO WARBANTY of any kind
Enter a databasze and options for connect

Wfindoms DSH name: Ifilesystem

FSOL hast [nane ar IP): Ilocalhost

MySOL database name: lfi|ESyStem

Iser: II'I'IBJS'IH
Pazzword: I“m
Prart [if riok 3306]; I

S0AL command on connect: I

— Optiong that affects the behaviour of MuODBC
™ Don't optimize column width T~ Pad CHAR to full length
™ Return matching rows [Retum table names in SOLDescibeCol
[Trace MyODBC [Use compressed protocol
[T Allow BIG results ™ lgnare space after function names
™ Don't prompt on connect ™ Force use of named pipes
[~ Simulate ODEC 1.0 [Change BIGINT calumns to INT
™ lgrore # in #.table ™ Mo catalog [exp)
™ Use manager cursors [exp) [Read options from C:hmy.cni
[Don't use setlocale ™ Safety [Check this if you have problems)
™ Disable ranzactions

ak I Cancel

Make sure that you set both the username and password to mysql.That's all there is to setting up the SQL
database. Let's move on to writing our pluggable provider's implementation.

Writing a Pluggable Provider

Since the default Java provider does not implement security in any way, we need to create our own pluggable

provider. To do this, we implement the or g. apache. soap. uti |l . Provi der interface, as all Apache
SOAP providers do. Thisinterfaceis as follows:

package org. apache. soap. util;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport org. apache. soap. *;

i mport org. apache. soap. rpc. *;

i mport org. apache. soap. server. *;

public interface Provider {
public void | ocate(Depl oynent Descri ptor dd,

Envel ope env,
Cal | call,
String net hodNane,

622

Case Study: A Java Filesystem Web Service

String target bj ect URl ,
SOAPCont ext reqCont ext)
t hrows SOAPExcepti on;
publ i c void invoke(SOAPCont ext req, SOAPContext res) throws SOAPExcepti on;

}

Thel ocat e() method will be called to allow the provider to verify that the service exists and is available to
process the request. If an error occurs this method should throw a SOAPExcept i on. After a successful call to
| ocat e() the SOAP engine will then call i nvoke() to actually call the service. Y ou may notice that the
invoke method does not have any parameters explicitly pertaining to the Web Service; they are extracted using
the SOAP envelope passed to the RPCRout er Ser vl et viaHTTP.

Thei nvoke() method is also responsible for converting any response from the service into a SOAP envelope
and placing it in the r es parameter (a SOAPCont ext). This response is then sent back to the client viaHTTP.

Now, let's walk through the implementation of Fi | esyst enPr ovi der, our pluggable provider:

i mport org. apache. soap. rpc.* ;

i mport org.apache. soap. server.* ;

i mport org. apache. soap. server. http.* ;
i mport org.apache. soap. util.* ;

public class Fil esystenProvider inplenments Provider

{

Variables are declared, followed by thel ocat e() method. Here, we need to grab the HTTP Basic Authentication
information from the headers. This can be obtained fromthe Ht t pSer vl et Request object:

public void | ocate(Depl oyment Descri ptor dd,
Envel ope env,
Call call,
String net hodNaneg,
String target Chject UR,
SOAPCont ext reqCont ext)
throws SQAPException {

H t pServl et servlet = (HtpServlet)reqContext.getProperty(
Const ant s. BAG HTTPSERVLET) ;
Ht t pSessi on session = (Ht pSessi on)reqCont ext . get Propert y(
Const ant s. BAG HTTPSESSI ON) ;
Ht t pServl et Request req =
(Ht t pServl et Request) r eqCont ext . get Propert y(Const ant s. BAG HTTPSERVLETREQUEST) ;

HTTP encodes the authentication header using Base64 encoding. This string is in the form:
Aut hori zati on: Basi c usernane: password

Where user nane: passwor d has been encoded in Base64. Now, let's extract the authentication information:

623

Chapter 14

String authorization = req. get Header ("aut hori zati on");

aut hori zation = authorization. substring(authorization.indexO(" "));
byte[] bytes = Base64. decode(aut hori zation);

String decoded = new String(bytes);

int i = decoded.indexOr(":");

String usernane = decoded. substring(0,i);

String password = decoded. substring(i+1, decoded. | ength());

Next, we need to connect to our database so we can perform the authentication. |'ve created a separate data
access class called Fi | esyst enPr ovi der DAO to manage the database connection and abstract out the

authentication and authorization queries. We'll use the i sAut hent i cat ed() andi sAut hori zed()
methods of this class to evaluate the caller's credentials. Our first query validates the user's password. If this
function returns true, we perform our second query, which evaluates his authorization to the Web Service

requested (Fi | esyst enPr ovi der DAQ. j ava):

public bool ean isAuthenticated(String usernane, String password) {
try {

/1 Create our Statement object
Statement stnt = con.createStatenent();

/1 Execute the dynam c query
Resul t Set rs = stnt.executeQuery("SELECT password FROM " +
"princi pal WHERE usernane = '" + usernanme + "'");

/1 Get the first (and hopefully only) record:
if (rs.next()) {
// Validate the password
if(rs.getString("password").equal s(password)) {
return true;
}
}

return fal se;

}
catch (SQ.Exception e) {
return fal se;

}
}

Here, we dynamically create the query string by concatenating theuser nane and passwor d parameters with
the SELECT statement. While this works, it's not very efficient under load. The next method,
i sAut hori zed(), demonstrates the use of a prepared statement to perform its query.

624

publ i ¢ bool ean i sAuthorized(String usernane, String uri) {

try {
/] Create a Prepared Statenent object

Pr epar edSt at enent pstnt =
con. prepar eSt at ement (" SELECT p. usernane FROM " +
"princi pal _webservice_map pwm " +
"principal p, webservice ws " +
"WHERE pwmp_id = p.id " +
"AND pwmws_id = ws.id " +
"AND p.username = ? ANDws.uri = ?");

Case Study: A Java Filesystem Web Service

Notice the question marks —these are placeholders for the parameters to the query. Unlike the previous
example, we do not dynamically build a query string for prepared statements. We set parameters like this:

pstnt.set String(l, usernane);
pstnt.setString(2,uri);

Next, we execute the query, and compare the password field as before:

Resul t Set rs = pstnt.executeQuery();
if (rs.next()) {
if(rs.getString("usernane"). equal s(usernane)) {
return true;
}
}

return fal se;

}

catch (SQ.Exception e) {
Systemerr.println("SQException: " + e.getMessage());
return fal se;

}
}

Usually, using a Pr epar edSt at enent is preferable, since many database servers can pre-compile or cache
this type of query, improving performance. The database query can be done either way; | just wanted to
demonstrate both techniques. If thisfunction returns t r ue, we can grant the caller access to the Web Service!

Next, theFi | esyst enPr ovi der class resolves the Web Service, which is referred to as the tar get object.
Apache SOAP's Service Manager performs this lookup.

ServletConfig config = servlet.getServletConfig();
Servl et Cont ext context = confi g. get Servl et Cont ext ();
Servi ceManager servi ceManager =
Server HTTPW i | s. get Ser vi ceManager Fr omCont ext (cont ext) ;

Did we perform a call on a valid method nhame? Let's check. If not, we need to throw an exception in the form
of a SOAP Fault:

if (!RPCRouter.validCall (dd, call)) {
t hrow new SQAPExcepti on (Constants. FAULT_CODE SERVER,
"Method '" + call.getMethodNane () + "' is not supported.”); }

Now that we've successfully located the Web Service, let's set areference to it as our target object:

Ohj ect target bj ect = Server HTTPU i | s. get Tar get Cbj ect (servi ceManager,
dd, target(hjectURl, servlet, session, context);

Once our target object has been referenced, we can invoke the service:

625

Chapter 14

publ i c void i nvoke(SOAPCont ext reqCont ext, SQAPCont ext resCont ext)
t hrows SOAPException {

First, we perform the actual call on the target object:

Response resp = RPCRouter.invoke(dd, call, targetoject, resContext);
Next, we build our SOAP Envelope object. Thiswill contain our response:

Envel ope env = resp. bui | dEnvel ope();

Weneed an| OW i t er object with which to construct our XML declarations. A Stri ngW it er ispassedto
themar shal | () method to accomplish this:

StringWiter sw = new StringWiter();
env. marshal | (sw, call.get SOAPVappi ngRegi stry(), resContext);

Our last bit of logic sets the root part of our SOAP responsetothe St ri ngW it er object wejust created,
using our standard UTF-8 encoding:

resCont ext . set Root Part (sw.toString(),
Const ant s. HEADERVAL_CONTENT_TYPE_UTFS8) ;
}

Here, the Pr ovi der classinvokes the Web Service as identified by the target object and builds a SOAP
Response envelope to encapsulate our return value, encoded in SOAP's XML Envelope format.

Writing the Filesystem Web Service

Coding the actual Web Service is the simple part of this exercise. Here, we will write a Web Service that
exposes several methods, exposing some of the functionality of thej ava. i 0. Fi |l e class as a Web Service.
Since we are using the HTTP Header information in the SOAP context for authentication information, we need
to have access to that information in our Web Service implementation. Y ou will notice each public method has
aparameter of type SOAPCont ext . These method signatures do not match those expected by the

Fi | esyst enPr oxy class (shown later in this chapter). If a service's public method with a matching signature
is not found, a second search is done by our Fi | esyst enPr ovi der for a method with an initial parameter
of type SQAPCont ext .

You should be forewarned that using the SOAP context information in your Web Service
implementation will bind you to Apache SOAP. This is one published issue in the Apache
SOAP release notes, and you are advised to use this technique carefully.

Having access to the incoming SOAPCont ext provides you with access to the following objects via the
SCAPCont ext . get Property() method:

626

Case Study: A Java Filesystem Web Service

Q HttpServlet, usingthekeyor g. apache. soap. Const ant s. BAG_ HTTPSERVLET
Q Htt pSession, using the key or g. apache. soap. Const ant s. BAG_HTTPSESSI ON

Q HttpServl et Request, using the key
or g. apache. soap. Const ant s. BAG HTTPSERVLETREQUEST

Q HttpServl et Response, using the key
or g. apache. soap. Const ant s. BAG HTTPSERVLETRESPONSE

If the original SOAP request was in the SOAP Attachments form, then you can reference the MIME-encoded
attachments using the get BodyPar t () method.

Using SOAP Attachments

In this section, you will see how SOAP Attachments are used to send and receive file attachments as part of the
creat eNewFi | e() and get Fi | e() methodsin our Web Service. Apache SOAP allows data to be passed along
with the XML message without having to embed the datain the XML itself. Since our SOAP message take the form
of aMIME multipart message (this is defined in the specification — see http://www.w3.0rg/TR/SOAP -
attachments), entities such asfiles can be embedded inside.

Below is our Web Service implementation. (Thisisthefile Fi | esyst em j ava from the code download):

package com markrichman. fil esystem

i mport java.io.*;

i mport java.sql.*;

import java.util.Date;

i mport java.util.Enuneration;

i mport javax.activation.*;

i mport javax.mail.internet.*;

i mport javax.servlet.* ;

import javax.servlet.http.* ;

i mport org. apache. soap. encodi ng. soapenc. Base64;
i nport org.apache. soap. r pc. SOAPCont ext ;
i mport org. apache. soap. util.m ne. *;

i mport org.apache. soap. util.xm.*;

/**

* @uthor Mark A R chman
* @ersion 1.0
*/

public class Filesystem {

We will go through each of the methods, explaining how the whole attachment mechanism works. Many of the
method names will remind you of those fromj ava. i 0. Fi | e. Thisisintentional, as our Web Service should
behave as transparently as possible from a developer's point of view. In fact, most of these methods simply
wrap the Fi | e class methods entirely.

627

Chapter 14

ThecopyTo() method simply copies afile to a new location:

public void copyTo(SOAPCont ext ctx, String sourcePath, String destPath) throws
Exception {
File fnew = new Fil e(get Hormedi r (get Usernanme(ctx)) + "/" + destPath);
File fold = new Fil e(get Hormedi r (get Usernanme(ctx)) + "/" + sourcePath);

Input Streamin = null;

Qut put Stream out = nul | ;

try {
in = new Fil el nput Strean(fold);
out = new Fi |l eQut put St rean{fnew);
while (true) {

int data = in.read();
if (data == -1) {
br eak;

}
out.wite(data);

}

in.close();

out.cl ose();

}

finally {
if (inl=null) {

in.close();
}

if (out '=null) {
out. cl ose();

}
}

Note the two methods below, which are used throughout this class:

Q get Honedi r —Gets auser's home directory from the database viathe Fi | esyst enDAO class

Q get User nane — Gets the username from the SOAP Context object
cr eat eNewFi | e creates a new file, relative to the user's home directory (see the DDL above):
public void createNewFi| e(SOAPContext ctx, String filePath) throws Exception {
File fnew = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);

if(!fnew createNewFile()) {
throw new Exception("File already exists: " + filePath);
}

Next, we must create two objects: aM meBodyPar t object to get at the SOAP attachment, and a
Dat aHand| er object to get anl nput St r eamfor reading. The JavaMail API provides this functionality for
us:

628

Case Study: A Java Filesystem Web Service

M meBodyPart nbp;

Dat aHandl er dh;

oj ect o;

I nput Streamiis;

Fi | eQut put Stream f os = new Fi | eCut put Strean(f new);

try {
nbp = ct x. get BodyPart (1);
dh = nbp. get Dat aHandl er () ;
is = dh.getlnputStrean();

Now, we simply write out the file on the server:

int c;
while ((c =is.read()) != -1)
fos.wite(c);

}
cat ch(Exception e) {

t hrow new Excepti on(e. get Message());

}

return;

}

Thedel et e, method deletes afile:

publ i c bool ean del et e(SOAPCont ext ctx, String filePath) throws Exception {
File fnew = new Fil e(get Horedi r (get Username(ctx)) + "/" + filePath);
return fnew del ete();

We can also check the existence of afile on the server using theexi st s, method:

publ i c bool ean exi st s(SOAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);
return f.exists();

}

This method uses the JavaMail API in the reverse way of the cr eat eFi | e, method. Here, we send a file back
to the client using the Dat aHandl er :

publ i ¢ DataHandl er getFil e(SOAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Hormedi r (get Usernane(ctx)) + "/" + filePath);
if(!f.exists())
t hrow new Exception("File not found.");

try {
Dat aSour ce ds = new Byt eArrayDat aSource(new File(f), null);
Dat aHandl er dh = new Dat aHandl er (ds);

629

Chapter 14

return dh;

}
cat ch(Exception e) {

Systemerr. println(e. get Message());
}

| engt h, gets afile'slength in bytes:

public long | ength(SQAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);
return f.length();

}

get Par ent , gets afile's parent directory:

public String getParent (SQOAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Honmedi r (get Usernanme(ctx)) + "/" + filePath);
return f.getParent();

}

i sDirectory, asksif afiledescriptor is adirectory.

publ i ¢ bool ean isDirectory(SQOAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);
return f.isDirectory();

i sFi | e, tests to see whether the fileisanormal file. A fileisnormal if:

Q Itisnot adirectory

Q It satisfies other operating system-dependent criteria (i.e. symbolic links on Unix)

Any non-directory file created by a Java application is guaranteed to be a normal file.

publ i ¢ bool ean i sFil e(SQAPCont ext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Username(ctx)) + "/" + filePath);
return f.isFile();

}
| ast Modi fi ed, returnsthe time that the file denoted by the filePath was last modified:

public I ong | ast Modi fi ed(SOAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);
return f.lastMdified();

630

Case Study: A Java Filesystem Web Service

|'i st returnsan array of strings naming the files and directories in the directory, assuming the filename we
give represents a directory. This again simply encapsulates the functionality of j ava. i o. Fi |l e:

public String[] |ist(SOAPContext ctx, String filePath) throws Exception {
File f = new Fil e(get Horredi r (get Usernane(ctx)) + "/" + filePath);
return f.list();

nkdi r creates adirectory on the server, given a parent directory specified by f i | ePat h:

publ i ¢ bool ean nkdir (SOAPCont ext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);
return f.nkdir();

}

nkdi r s creates the directory named by thef i | ePat h, including any necessary parent directories that do not
already exist:

publ i c bool ean nkdirs(SQAPCont ext ctx, String filePath) throws Exception {
File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);
return f.nkdirs();

}

r enaneTo renames afile:

publ i ¢ bool ean renaneTo(SCAPCont ext ctx, String filePath, String newName) throws
Exception {

File f = new Fil e(get Hormedi r (get Usernane(ctx)) + "/" + filePath);

return f.renameTo(new Fil e(get lsernane(ctx) + "/" + newNane));

}
set Last Modi fi ed sets the last-modified time of afile or directory:

publ i c bool ean setLast Mdified(SOAPContext ctx, String filePath, long tinme) throws
Exception {

File f = new Fil e(get Honedi r (get Usernane(ctx)) + "/" + filePath);

return f.setlLast Modified(tine);

Here is our get User nane() method. It's important to understand how the HTTP header information is
extracted, so we'll go into some detail here. We are particularly interested in the Aut hori zati on fieldin
the HTTP headers. We can access this simply by calling get Header () on the request object:

protected String get User name(SOAPCont ext ctx) {
Ht t pSer vl et Request req =

(Htt pServl et Request) ct x. get Property("Htt pServl et Request ") ;
String authorization = req. get Header (" Aut hori zati on");

For HTTP Basic Authorization, the authorization header is of the form:

631

Chapter 14

Aut hori zation: Basic {Base64-encoded usernanme & password}

Where the username and password look like "user name: passwor d" prior to encoding with the Base64
algorithm. Using some fancy substring manipulation, we get the encoded username and password string:

aut hori zation = aut hori zati on. substri ng(aut hori zation.indexCf(" ")); //
strip "Basic "

Next, decode it using Base64. decode() :

byte[] bytes = Base64. decode(aut hori zation);
String decoded = new String(bytes);

The username is what we're after here. It's on the left side of the colon:

int i = decoded.indexOr(":");
String usernane = decoded. substring(0,i);
return usernane;

get Horredi r gets the user's home directory viathe Fi | esyst enDAOdata access object:

/**

* CGets the user's hone directory via the FilesystenDAO

* data access object.

*/

protected String getHomedir(String usernane) throws Exception {
Fi | esyst enDAO dao = new Fi | esyst enDAQ() ;

try {
return dao. get Honedi r (user nane) ;

catch (Exception e) {
t hrow new Excepti on(e. get Message());

}

}

Once compiled, you can add Fi | esyst em cl ass to your classpath, either under the
com mar kri chman/ fil esysten path,orina.j ar file containing this package structure. We'll cover
packaging a bit later.

Deploying Web Services Using Pluggable
Providers

Web Services can be deployed via the command line or through the Apache SOAP Web Admin. Make sure
your web server is running, and launch http://localhost:8080/soap/ from your browser. Click Run the
admin client when you see the welcome screen. Y ou should then see the following screen:

632

Case Study: A Java Filesystem Web Service

4} Apache SOAP Admin Tool - Microsoft Internet Explorer =] 3]

J File Edit W“iew Favorites Tools Help ﬁ

J <P Back » = - @ i | @Search [Ge] Favarites @History ||%v = E -

JAddress I@ http:/ localhost: 8080 soapadmin/indes:. htrl j @GU

Apache SOAP Admin A-

What do you want to do today?
List
Deploy
Un-deploy

|@ ’_’_ (EE Local inkranst 4

This screen shows the three options that allow you to list, deploy, and un-deploy your Web Services. Since we

have no Web Services deployed yet, go ahead and click Deploy. Y ou will be presented with the following
screen:

T Az ba S0AT Adrein Toa! - =i man® ntermet Baplorer — =10} =1
e Ede Wes PFewiss Took FeEp

I R N _ﬂ_i-m:h AdPeeorie ety | T b TH ¢ o]

Aickirmen] hicty N 0]y i ke el =] e

Apache SOAP Admin 2

-
QR ey » Servies
Service Deployment Descriptor Template

m H‘Pw L

o |

I [

b (W hibespice separated bt of rretheed 2 aves) —

S

y

Far Uzer-Ciefned Provider Typa, Eniar FITLL ez Hame

Hissier of Optisre:
Fey LI

Tos Frosder Clis
Dvcasrder | s = =

@l O Lerairerat &

5

633

Chapter 14

Let'slook at each property in the deployment screen:

Property Description

ID A URN that uniquely identifies the service to clients. It must be unique
among the deployed services, and be encoded as a URI. We commonly
use the format: "ur n: Uni queSer vi cel D". It corresponds to the
target object ID, in the terminology of the SOAP specification. | chose
urn: fil esyst em butyou can really pick any locally unique string
you like. See http://www.ietf.org/rfc/rfc2141.txt for afull description
of the URN syntax.

Scope Defines the lifetime of the object serving the invocation request. This
corresponds to the scope attribute of the <j sp: useBean> tag in JSP.
This tag can have one of the following values:

a Request — a new object is created for each request, and is
available for the complete duration of the request.

a Session — a single instance of the object is created and available
for the complete duration of the session.

Qa Application — a single instance of the object is created and
available for the complete duration of the application. That is,
until the server is shut down.

Method list Defines the names of the method that can be invoked on this service
object. We have the following methods: copyTo, cr eat eNewFi | e,
del ete, exi sts,getFile,getParent ,isDirectory,isFile,
| ast Modi fied,| ength,list,nkdir, nkdirs,renanmeTo, and

set Last Modi fi ed.

Provider type Indicates whether the service is implemented using Java or a scripting
language. We obviously are using Java, and our provider's full class
nameis.
com markri chman. fil esystem Fi | esyst enProvi der.

Provider class (for Java Fully specified class name of the target object servicing the request.
services) Our pluggable provider is called

com markrichman. fil esystem Fil esystem

We can skip the rest of the options for the purposes of this chapter. Once you've entered the fields, scroll down
and click the Deploy button at the bottom of the window. Y ou should see a screen that indicates that the
service has been deployed. If you click on the List button, you'll see the URN of your Web Service is listed.
Click onitslink and you should see the deployed service information screen:

634

Case Study: A Java Filesystem Web Service

T Fmarie SOAF fdmin Tool - Mamsslt Tskemset Bminner =10 =]
e CE ven Pemtn o g _ -
Ewk - o - (D[] O D (5] Fecies PHeney | Che S 1S - (H

| Ackdmmn] oo 1 st DY ol ek il x| e

Apache SOAP Admin &

List Deployed Service Information

| "urn:filesystem' Service Deplovment Descripior
Deploy |

Froperty Diptady
||:D urrrfile wyetemn
Unal |5wu¢ Sease
n-deploy i
;’::irﬁﬁ; com marknchmen flesystem FlesystemProamder

|F‘ml.'|.der Clase com marknchman flesystem Flesystem
[TTem Static Pl [Ealen
duods copsTe, creats HewFile, delete, ernty, gerFik, getFarent, isDeectery, isFike. Jaathe=died,
lecgth, hst, orbedhr, mbcdrr, renameT', setl meibla dfied
[Tope Mappimes
Diefaudt Mapping:
Begriry Class

& [. [P pr—s

&

Alternatively, we can deploy the Web Service from the command prompt. To do this, we use a deployment
descriptor in XML format. The pluggable provider is simply placed as the full classname in the deployment
descriptor's type attribute (Depl oynent Descri pt or. xm):

<i sd:service xmns:isd="http://xn.apache. org/ xni - soap/ depl oynent "
id="urn:filesystem >
<i sd: provi der type="com markrichnman.fil esystem Fi | esystenProvider"
scope="Sessi on"
nmet hods="copyTo createNewFi |l e del ete exists getFile getParent
isDirectory isFile |astMdified length |ist nmkdir nkdirs renameTo
set Last Modi fi ed">
<isd:java class="com markrichman.fil esystem Fi |l esysten!/>
</'i sd: provi der >
</isd: service>

Use the deployment descriptor above to fully describe the service. To deploy the Web Service from the
command line;

java org. apache. soap. server. Servi ceManager d i ent
http://1 ocal host:8080/ soap/ servl et/ rpcrouter depl oy Depl oynent Descri ptor.xm

The Ser vi ceManager d i ent isSOAP client provided with the distribution that communicates with the
Ser vi ceManager . Your Web Service will be configured and registered by the Service Manager automatically.

635

Chapter 14

Writing the Filesystem Proxy Class

Invoking a Web Service using the Apache SOAP client API isrelatively straightforward. Here, we have
created aclient proxy class called Fi | esyst enPr oxy to help abstract out alot of the SOAP internals. You
will use this class from your client applications to interact with the Filesystem Web Service. Apache SOAP
Web Services are invoked using theCal | object (or g. apache. soap. rpc. Cal |). Thisobject is
configured with the endpoint's URL, the target object's URI, method name, and any parameters. In this

example, the URL we connect to will be http://1 ocal host: 8080/ soap/ servl et/ rpcrouter.
Remember earlier in this chapter, we configured the server to ook for SOAP services on port 8080, with

context / soap. ThisURL isboundto or g. apache. soap. server. htt p. RPCRout er Ser vl et onthe
server (see/webapps/ soap/ VEEB- | NF/ web. xm). We also construct a SOAPHTTPConnect i on object to
capture the HTTP basic authentication information. The URI of the method call element is used as the object
ID on the remote side. Since our Filesystem service takes no parameters, our par ans object is empty (you
will notice, however, that the Filesystem Web Service captures the SOAPCont ext parameter transparently).
We can now call the i nvoke() method of our Cal | object, which returns a Response object. If any
exceptions were thrown on the server, theFaul t object will contain those details. Ther esp object will
encapsul ate the SOAP response. Calling the Response. get Ret ur nVal ue() . get Val ue() will display
thereturn value of an object. All other types must be cast from object to their expected types. The following
code is available from the download as Fi | esyst enPr oxy. j ava. With the Java Activation Framework and
JavaMail on your classpath, you can compile the code with the following command:

javac com markrichman/fil esysteni Fil esyst enProxy.java

Again, let's walk through this class's implementation. As the majority of the functionsin this section are fairly
repetitive, | will just display the most interesting ones:

package com markrichman. fil esystem

import java.io.*;

i mport java.net.URL;

i mport java.util. Vector;

i mport javax.activation.*;

i mport javax.nmil.internet.*;

i nport org. apache. soap. Const ant s;

i mport org. apache. soap. rpc. Cal | ;

i mport org. apache. soap. Faul t;

i mport org. apache. soap. r pc. Par anet er;
i mport org.apache. soap. r pc. Response;
i mport org. apache. soap. transport. http. SOAPHTTPConnect i on;
i mport org.apache. soap. util.mme.*;

public class Fil esystenProxy {

Thecr eat eNewFi | e() method sets up our Cal | object as usual. Notice the at t ach() method. Thisis
responsible for the MIME functionality used in the SOAP with Attachments specification.

636

Case Study: A Java Filesystem Web Service

publ i c bool ean createNewri |l e(String filePath, File file) throws Exception {
Call call = new Call ();
cal | . set Tar get Obj ect URl (t arget Obj ect URl) ;
cal | . set Met hodNanme(" creat eNewFi | e") ;
SOAPHTTPConnecti on hc = new SQAPHTTPConnecti on();
hc. set User Nane(user nane) ;
hc. set Passwor d(passwor d) ;
cal | . set SOAPTr ansport (hc);
cal | . set Encodi ngStyl eURl (Const ants. NS_URI _SOAP_ENC) ;
Vector params = new Vector ();
par ans. addEl ement (new Paraneter("filePath", String.class, filePath, null));
cal | . set Par ans(par ans) ;

Systemout.println("Attaching file: " + file.getNane());
attach(file,call); // M ME Attachment

Response resp = call.invoke (new URL(url), "");

if (resp.generatedFaul t()) {
Fault fault = resp.getFault ();
Systemout.println ("Quch, the call failed: ");
Systemout.printlin (" Fault Code =" + fault.getFault Code ());
Systemout.println (* Fault java.lang.String =" + fault.getFaultString
0));
t hrow new Exception(fault.getFaultString());

}
el se {

return true;
}

Here is the code to actually perform the download. We get the file using the DataHandler. We use a protected
utility function called det ach() to assist us:

public void getFile(String filePath, String local) throws Exception {
Call call = new Call ();
cal | . set Tar get Cbj ect URI (t ar get Cbj ect URl) ;
cal |l . set Met hodNane("getFil e");
SOAPHTTPConnecti on hc = new SQAPHTTPConnecti on();
hc. set User Nane(user nane) ;
hc. set Passwor d(passwor d) ;
cal | . set SOAPTr ansport (hc);
Vector params = new Vector ();
par ans. addEl ement (new Paraneter("filePath", String.class, filePath, null));
cal | . set Parans (parans);

Response resp = call.invoke (new URL(url), "");

if (resp.generatedFault ()) {

637

Chapter 14

Fault fault = resp.getFault ();
Systemout.println ("Quch, the call failed: ");

Systemout.printin (" Fault Code =" + fault.getFaul t Code ());
Systemout.println (" Fault java.lang.String =" + fault.getFaultString
)
t hrow new Exception(faul t.getFaultString());
}
el se {
Paranmeter result = resp.getReturnValue ();
Systemout.println (result.getValue());
File f = new File(local);
detach(resp, f);
}
}

Another interesting method — here we pass back a string array. Apache SOAP handles this for us
automatically. List all the filesin a directory, returned as a string array:

public String[] list(String filePath) throws Exception {
Call call = new Call ();
cal | . set Target Obj ect URI (t ar get Obj ect URl) ;
cal | . set Met hodNane("l engt h") ;
SOAPHTTPConnect i on hc = new SOQAPHTTPConnecti on();
hc. set User Nane(user nane) ;
hc. set Passwor d(passwor d) ;
cal | . set SOAPTr ansport (hc);
Vector paranms = new Vector ();
parans. addEl enent (new Paraneter("filePath", String.class, filePath, null));
cal | . set Parans (parans);

Response resp = call.invoke (new URL(url), "");

if (resp.generatedFault ()) {
Fault fault = resp.getFault ();
Systemout.printin ("Quch, the call failed: ");
Systemout.println (" Fault Code =" + fault.getFaul t Code ());
Systemout.println (" Fault java.lang.String =" + fault.getFaultString

()
t hrow new Exception(fault.getFaultString());

}

el se {
Parameter result = resp. get ReturnVal ue ();
Systemout.println (result.getValue());
String[] s = (String[])result.getValue();
return s;

}

Hereis our utility function for attaching afile to our Cal | object. This should look very familiar, however we
add one line of code to add the M neBodyPar t to the Cal | object. The SOAP framework will marshall the
binary attachment for us:

638

Case Study: A Java Filesystem Web Service

protected void attach(File file, Call call) {
try {
Dat aSour ce ds = new Byt eArrayDat aSource(file, null);
Dat aHandl er dh = new Dat aHandl er (ds) ;
M neBodyPart part = new M neBodyPart ();
part. set Dat aHandl er (dh) ;
cal | . addBodyPart (part);

cat ch(Exception e) {
Systemerr.println(e.get Message());

}

Now, we can detach the MIME attachment. We simply get at the M meBodyPar t ; since we only have one
attachment in this instance, we pass get BodyPar t () aparameter of 1. The attachment is saved to alocal file,

specified by f .

protected void detach(Response resp, File f) {

/l Wite the data

try {
M neBodyPart nbp;
Dat aHandl er dh;
hj ect o;
I nput Streamii s;
Fi | eQut put Stream fos = new Fi | eQut put Strean{(f);

nmbp = (M neBodyPart)resp. get BodyPart (1);
dh = nbp. get Dat aHandl er () ;

is dh. get I nput Strean() ;
int c;
while ((c = is.read()) !'= -1)

fos.wite(c);

cat ch(Exception e) {
Systemerr.println(e.get Message());
}

Writing the Filesystem Client Class

TheFi | esyst emclient classisrelatively simple. It simply instantiates theFi | esyst enPr oxy class, and
exercises afew of its functions. Feel free to modify this implementation to test on your own. Y ou'll want to
specify afile on your local system, represented here asa. gi f. The following code is available in the code

download asFi | esystenC i ent.j ava:

639

Chapter 14

package com markri chman. fil esystem
public class FilesystenCient {

public static void main (String[] args) {

try {
Fi |l esystenProxy fs = new Fil esystenProxy();

fs.setUsername("markr");
fs. set Password("Jsdh8qSD") ;

for(int i=0;i<10;i++) {
if(fs.exists(it"a.gif"))
conti nue;
fs.createNewFil e(i +"a.gif", newjava.io. File("a.gif"));
Systemout. println("Last Mdified: " +
fs.lastMdified(i+"'a.gif"));

We specify the new last-modified time, measured in milliseconds since the epoch (00:00:00 GMT, January 1,
1970):

fs.setLast Modified(i+"a.gif", 153055769);
Systemout . println("New Last Mdified: " +
fs.lastMdified(i+"a.gif"));
Systemout.printin(fs.length(i+"a.gif"));
fs.copyTo(i+"a.gif", i+"xa.gif");
fs.delete(i+"a.gif");
fs.delete(i+"'xa.gif");
}
}
cat ch(Exception e) {
Systemerr.println(e.get Message());
}

Packaging the .jar File

| prefertousea. j ar file, so| can package my Web Service, pluggable provider, and database classes all
together. We create our . j ar file as follows:

jar cvf Filesystemjar com markrichman/fil esysten *.cl ass
Theresulting . j ar filewill be structured like this:

META- | NF/ MANI FEST. M-

com mar kri chman/fil esysteni Fil esystem cl ass

com mar kri chman/ fil esysteni Fi | esystenClient. cl ass
com mar kri chman/ fil esysten Fi | esyst enDAQ. cl ass

com mar kri chman/ fil esysteni Fi | esyst enProvi der. cl ass
conmf mar kri chman/ fil esysteni Fi | esyst enProxy. cl ass

Dropping this. j ar fileinto Tomcat's/ | i b folder automatically adds it to the classpath on startup.

640

Case Study: A Java Filesystem Web Service

Trying It Out

There are afew minor prerequisites before you fire up the client. You need to create a folder called

C.\users. Thisisthe homedi r valueinthepri nci pal table specifiedinFi | esyst em ddl . Thetest file
a. gi f will be uploaded and saved there by the web service. Thea. gi f fileisatest file - you can alter

Fi | esystenCl i ent. | ava to point to whichever file you like on your hard drive.

To execute theFi | esyst enCl i ent, run the following at the command prompt:
>java com.markrichman.filesystem.FilesystemClient

If all goes well, the client will be authenticated against theFi | esyst emWeb Service. Y ou should also see
some informational text in the web server's console. Now, test out what happens when you use the wrong
password, or delete the referencein the pri nci pal _webser vi ce_map table in the database. There is a Web
Service called ur n: soap- unaut hori zed in the database for which no user has permissions. Try using this

asthe parameter for cal | . set Tar get Qbj ect URI () . Bad username/password combinations generate the
fault string Bad password, and authorization failures generate a User not authorized fault. I'll leave it as an
exercise to the reader to explore the strength of this mechanism.

Summary

| hope you enjoyed this tour of the features and facilities offered by the Apache SOAP Toolkit. The intention
throughout this case study has been to provide a solid starting point for you to explore the areas of Web
Service development that are of interest to you. Hopefully, this chapter has inspired you to develop unique
Web Services of your own with Apache SOAP and Java.

For further work, here are some suggestions on how to build on this case study:
Q Implement the data access in LDAP, as opposed to JDBC.

Q Create awireless device application that performs the client and proxy functionality. One application
hereisvirtual local storage for handheld devices with no local storage of their own.

Q Implement an offsite backup solution via SOAP and HTTP.
Q Build upon this service to add versioning for your own configuration management system.

641

Chapter 14

642

