

Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

Collection Serialization

ASP.NET Web Services

Mark A. Richman
February, 2004

 Collection Serialization

Table of Contents
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

ii

Table of Contents
Revision History.. Last Page

1 Introduction...3

1.1 Collections Overview ..3
1.2 Passing an IList..3
1.3 Passing an IDictionary as a Multidimensional Array ..3
1.4 Passing an IDictionary as a Jagged Array ...3
1.5 Serializing an IDictionary using XSD Types...4

2 Putting it all Together...6
Notices...7
Document Conventions ...8

 Collection Serialization

Table of Tables
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

3

1 Introduction
The most common Web Services implementations use simple parameters, such as strings and integers.
However, in the wild, many systems will need to pass complex types such as DataSets and Collections.
Although data structures such as these can solve many problems, they can also make interoperability more
difficult. Some data structures on one Web Services platform may be different on another. XML data types
defined in the XML Schema specification do not always match up perfectly with their corresponding types in
the CLR. Here we will focus on a solution for serializing collections in ASP.NET Web Services.

1.1 Collections Overview
Indexed collections are IList-implementing, distinguished by the fact that their contents can be retrieved via a
zero-based numeric index, like an array. The System.Collections.ArrayList object is one example of an indexed
collection.
Keyed collections are those that implement the IDictionary interface. They contain items that can be retrieved
by an associated key value of some kind. The contents of IDictionary collections are also usually sorted in some
fashion based on the key value and can be retrieved in sorted order by enumeration. The
System.Collections.HashTable class implements the IDictionary interface. However, ASP.NET Web Services
do not natively support the passing of IDictionary objects. If you need this functionality, you will need to either
develop a custom keyed collection that can convert itself into a type that ASP.NET Web Services does support,
or expose your methods in a more neutral form. Here, we choose the latter.

Note The good news is that Indigo will solve this problem by exporting valid XSD for any CLR
construct, including Generics and IDictionary. The bad news is that we have to wait for
Longhorn to get Indigo.

1.2 Passing an IList
Collections that can be converted into single dimensional arrays can be passed directly in a Web Service. For
example, an ArrayList of type string serializes to the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<ArrayOfAnyType
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <anyType xsi:type="xsd:string">MyString</anyType>
</ArrayOfAnyType>

Serializing an ArrayList referencing anything else than objects of type object raises an exception. That is the
reason for the restrictions on passing collections in the XML Serialization docs.

1.3 Passing an IDictionary as a Multidimensional Array
This sounds like an obvious solution. However, XML Web services that are created with ASP.NET do not
support multidimensional arrays. If you check out the Microsoft Knowledge Base article on the subject, you’ll
see this behavior is, in typical Microsoft fashion, “by design”.

1.4 Passing an IDictionary as a Jagged Array

 Collection Serialization

Table of Tables
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

4

Having been left with no more convenient alternative, we can convert a name/value collection into a two-
column jagged array in which one column contains the key and the other contains the value. It’s pretty easy to
write a two helper methods that convert between Hashtables and jagged arrays:

public object[][] ToJaggedArray(Hashtable ht)
{
 object[][] oo = new object[ht.Count][];
 int i = 0;
 foreach (object key in ht.Keys)
 {
 oo[i] = new object[]{key, ht[key]};
 i++;
 }
 return oo;
}

public Hashtable ToHashtable(object[][] oo)
{
 Hashtable ht = new Hashtable(oo.Length);
 foreach(object[] pair in oo)
 {
 object key = pair[0];
 object value = pair[1];
 ht[key] = value;
 }
 return ht;
}

To make use of these methods, simply change your WebMethod signatures from Hashtable/IDictionary to the
jagged array. For example:

[WebMethod]
public Hashtable GetHashtable()

becomes:

[WebMethod]
public object[][] GetHashtable()

1.5 Serializing an IDictionary using XSD Types
Now that we have exposed our WebMethods using types that can be serialized as XML, ASP.NET can
construct a proper SOAP envelope for our call:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetHashtableResponse xmlns="http://markrichman.com/webservices/">
 <GetHashtableResult>
 <ArrayOfAnyType>

 <anyType />
 <anyType />

 Collection Serialization

Table of Tables
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

5

 </ArrayOfAnyType>
 <ArrayOfAnyType>
 <anyType />
 <anyType />
 </ArrayOfAnyType>
 </GetHashtableResult>
 </GetHashtableResponse>
 </soap:Body>
</soap:Envelope>

As you can see, the CLR object type is represented as the XSD type anyType.

 Collection Serialization

Glossary
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

6

2 Putting it all Together
Now that we have a framework for serializing our collections, we can implement a web service and client
application to test it all out.
To paraphrase our web service definition, we expose two WebMethods of interest in CollectionsWS.asmx:

[WebMethod]
public object[][] GetHashtable()
{
 object[][] oo = helper.ToJaggedArray(this.ht);
 return oo;
}

[WebMethod] public void SetHashtable(object[][] oo)
{
 this.ht = helper.ToHashtable(oo);
}

After setting a Web Reference to CollectionsWS.asmx in our client, we can invoke the service as follows:

[STAThread] static void Main(string[] args)
{
 CollectionsHelper helper = new CollectionsHelper();
 Hashtable ht = new Hashtable();
 ht["Zero"] = 0;
 ht["One"] = 1;
 ht["Two"] = 2;
 ht["Three"] = 3;
 ht["Four"] = 4;

 object[][] oo = helper.ToJaggedArray(ht);
 MarkRichman.Collections.WebService.CollectionsWS ws = new
 MarkRichman.Collections.WebService.CollectionsWS();

 ws.SetHashtable(oo);

 oo = ws.GetHashtable();
}

Here, our Hashtable is cleanly serialized via SOAP and remains interoperable with non-ASP.NET clients, such as
Apache Axis, SOAP::Lite, and webMethods Glue.

Note Mark A. Richman has extensive experience as an independent consultant and software developer.
He specializes in large-scale distributed web applications. Mark demonstrates his technical expertise
through engagements with both Fortune 500 corporations and small start-up firms. He frequently
mentors software developers in object-oriented concepts and techniques, and is the author of several
publications. Visit his website at http://www.markrichman.com.

 Collection Serialization

Notices
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

7

Notices
Document Source
This document was written by:
Mark A. Richman
Empire Software, Inc.
7420 NW 70 Avenue, Parkland, FL 33067

Copyright © 2004 by Empire Software, Inc. All rights reserved.

Disclaimers
The following paragraph does not apply where such provisions are inconsistent with local law: EMPIRE SOFTWARE, INC.
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of expressed or implied warranties in certain transactions; therefore, this statement might not apply
to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. EMPIRE SOFTWARE, INC. might
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

This publication might contain reference to, or information about, EMPIRE SOFTWARE, INC. products (machines and
programs), programming, or services that are not announced in your country. Such references or information must not be
construed to mean that EMPIRE SOFTWARE, INC. intends to announce such EMPIRE SOFTWARE, INC. products,
programming, or services in your country.

The examples used in this document are for instructional purposes only. Any names, persons, associations, company
names, domain names, User IDs, email addresses, or other addresses contained in this document are not intended to
represent actual persons, associations, company names, domain names, User IDs, email addresses, or other addresses and
any that do are entirely coincidental.

If this document contains graphic representations of system functions, they are sourced from a development environment.
These graphics represent only examples of actual plans, products or services. The user interface that you see might be the
result of different branding schemes, Internet browsers, or products; therefore, the graphics on your screen might look
different from the graphics in this document.

Trademarks
EMPIRE SOFTWARE, INC. and EMPIRE SOFTWARE, INC.-related product names are trademarks of EMPIRE SOFTWARE, INC.
All other trademarks in this document are the property of their respective owners.

Contact Empire Software, Inc.
If you have comments or questions about the content in this document, please send an email message to the
EmpireDocuments@empiresoftware.net and include any specific details.

Requests for technical information about EMPIRE SOFTWARE, INC. products should be made to EMPIRE SOFTWARE, INC.
Marketing Representatives.

 Collection Serialization

Document Conventions
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

8

Document Conventions
The conventions used in this document are designed to be completely predictable and are used for the following
specific purposes.

Conventions List
Typeface Usage

Italic Used to indicate the following:
• The first mention of new terms in any information unit. For example:

The rudaplex and the strataguide have been the modified for this model.
• References to titles of books, chapters, headings, CDs, diskettes, or

software programs. For example:
Refer to The Technical Manual for technical term descriptions.

• Variables that the user types. For example:
Type the User ID in the User ID text box.

Bold Used to indicate the following:
• Exact text strings typed. For example: Type ABCDEFG.
• Keyboard keys pressed. For example: Press Ctrl+a, then press Enter.

Blue Underline Used to indicate linked email, IP, Network, or Web addresses. For example:
Go to http://www.microsoft.com for more information about Microsoft
products.

Cross-Reference Used to indicate a reference to another part of the same document. The grey
portion of the cross-reference is hot linked to the appropriate section of the
document, followed by a page number, also hot-linked to the same portion of
the document. For example:
For more information about the Document Conventions, see the "Document
Conventions" on page 8.

Operating System Text Used to indicate text that appears in a shell session for an operating system.
The displayed text pertains to operating system text only, not application
elements. For example:
Type LIST MAIN FOLDER. The screen displays the Main folder.

Program Code Used to indicate code listings. For example:
{
do something;
}
check to see if $user has the attrib 'atrib'
if (hasKey($user_obj, 'atrib', $dbh) != 1)
{
print "User not Authorized to update!";25
}

Screen Element Screen elements consist of anything that is displayed on screen (exclusive of
the operating system). This includes toolbar menu items, drop-down lists and
items in a drop-down list, buttons, or anything else a user sees on screen. For
example:
• From the Printer drop-down list, choose Local Printer. The Are You

Sure? dialog box appears. Click OK.
• User Not Authorized

 Collection Serialization

Document Conventions
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

9

Special Elements
These elements provide a variety of information ranging from warnings that the reader should not neglect to
supplementary information and tips that will simply enhance their reading experience.

Note Used to point out helpful ideas, some not-so-obvious features, quick or alternate ways to get a
particular job done, and techniques you might not discover by yourself. The Tip List special element
is used when multiple tips are used.

Note: Used to highlight certain information for the reader. Generally, the Note element provides additional
information on the current topic. The Notes: special element is used when multiple notes are required.

Important:
Used for information that is considered more pertinent to the reader than information presented in Note elements.

Caution:
Used as a hazard light in Empire Software, Inc. documents. Information included in a Caution element
could save the reader from hours of lost work.

 Collection Serialization

Revision History
Printed copies of this document are not controlled. Copyright © 2004 Empire Software, Inc. All rights reserved.

10

Revision History
This section provides document revision history.

Edition Date Technical Source Technical Writer Description

First January, 2004 Mark A. Richman Mark A. Richman First Draft

First February, 2004 Mark A. Richman Mark A. Richman Final Draft

Summary of Changes
Changes for First Edition

• Applied new styles

